期刊文献+

一类S-I传染病模型行波解的存在性 被引量:5

Travelling Wave Solutions in a Type of SI Epidemic Model with Diffusion
下载PDF
导出
摘要 本文研究了一类具有扩散且是非线性传染率的SI传染病模型,分析了模型的行波解的存在性条件,给出了最小波速与产生单调和振荡行波解的条件,并且进行了计算机仿真. This paper we study a type of SI epidemic model with a nonlinear incidence rate and have self-diffusion, analyze the existence of traveling wave solutions in this model, obtain the minimal wave speed, we also validate our result used computer.
机构地区 中北大学理学院
出处 《生物数学学报》 CSCD 北大核心 2008年第4期661-667,共7页 Journal of Biomathematics
基金 国家自然科学基金资助项目(60771026) 新世纪优秀人才支持计划资助项目(NCET050271) 山西省自然科学基金资助项目(2006011009).
关键词 传染病模型 反应扩散方程 全局渐近稳定 边界条件 行波解 Epidemic model Reaction-diffusion equation Global asymptotic stability Boundary condition Traveling wave solution
  • 相关文献

参考文献17

  • 1Ye Q X,Li Z Y. Introduction to Reaction-Diffusion Equations[M]. Beijing: science press, 1990.
  • 2王明新.抛物型方程的初边值间题[M].北京;科学出版社,1993.
  • 3Murray J D. Mathematical Biology H Spatial Models and Biomedical Applications[M]. Berlin:Springer-Verlag, 1990.
  • 4Dunbar S.Traveling wave solutions of diffusive Lotka-Volterra equations[J].Journal of Mathematical Biology, 1983, 17: 11-32.
  • 5Dunbar S. Traveling wave solutions of diffusive Lotka-Volterra equations: A heteroclinic connection in R4[J]. Transactions of the American Mathematical Society, 1984, 286: 557-594.
  • 6Dunbar S.Traveling waves in diffusive predator-prey equations: periodic orbits and point-to periodic hete- roclinic orbits[J].SIAM Journal on Applied Mathematics, 1986, 46: 1057-1078.
  • 7Volpert A. Traveling Wave Solutions of Parabolic Systems[M]. New York: American Mathematical Society, 1994.
  • 8Owen, M R, Lewis, M A. How predation can slow, stop or reverse a prey invasion[J].Bulletin of Mathematical Biology , 2001, 63: 655-684.
  • 9Jianhua Huang, Gang Lu, Shigui Ruan. Existence of traveling wave solutions in a diffusive predator-prey model[J]. Journal of Mathematical Biology, 2003, 46: 132-152.
  • 10Huber. A note on class of traveling wave solutions of a non-linear third order system generated by lie's approach[Jl. Chao, Solitons and Fractals, 2007, 32(4): 1357-1363.

二级参考文献8

  • 1Schaaf K W. Asymptotic behavior and traveling wave solutions for parabolic functional differential equations[J]. Trans Amer Math Soc, 1987, 302(2):587-615.
  • 2Zou X,Wu J. Existence of traveling wave fronts in delayed reaction diffsion systems via the monotone iteration method[J]. Proc Amer Math Soc, 1997, 125(9):2589-2598.
  • 3Jianhua Huang, Xinfu Zou. Existence of traveling wave fronts of delayed lattice differential equations[J].Memorial Uniuer, 2004, 298(2):538-558.
  • 4Shiwang Ma. Traveling wavefronts for delayed reaction-diffusion systems via a fixed point theorem[J]. J Differential Equations, 2001, 171(2):294-314.
  • 5Wu J, Zou X. Traveling Wave Fronts of Reaction Diffusion Systems with Delay[M]. New York: J Dynam Diff Equs, 2001, 13(3):651-687.
  • 6Joseph W. -H. So, and Xinfu Zou. Traveling waves for diffusive nicholson's blowflies equation[J]. Applied Math and Computation, 2001, 122(3):385-392.
  • 7Wu J, Zou X. Asymptotic and periodic boundary value problem of mixed fdes and wave solutions of lattice differential equations[J]. J Differential Equations, 1997, 135(2):315-357.
  • 8Gourley S A. Wave solutions of a diffusive delay model for populations of Daphnia magna[J]. Computer Math Appl, 2001, 42(12):1421-1430.

共引文献10

同被引文献31

引证文献5

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部