期刊文献+

非负整数对称阵可实现性问题的一个注记 被引量:1

A Note on the Realizability Problem of Nonnegative Integral Symmetric Matrices
下载PDF
导出
摘要 J.B.Kelly于1968年讨论了非负整数对称阵的可实现性问题,即:已知n阶非负整数对称阵B,问是否存在一个n×m的0-1矩阵A使得B=AA^T,并称满足条件的最小m为可实现矩阵B的容度.J.B. Kelly给出了n=1,2,3,4时矩阵B可实现的条件,并在B可实现时给出了它的容度.通过构造实现矩阵,很容易获得了n=1,2,3时相应的结论,并给出了3阶可实现矩阵B较为简便的容度算法.特别地,在B可实现时给出了其实现矩阵. In 1968, J. B. Kelly investigated the realizability problem of nonnegative integral symmetric matrices, i. e. , under what conditions there exists an n × m 0-1 matrix A for a given n-order nonnegative integral symmetric matrix B such that B =AA^Y? He defined the minimum m which meets the conditions above as the content of B. J. B. Kelly gave the realizable conditions for matrix B when n = 1,2,3,4 and its content. In this paper, we obtain the same results for n = 1,2,3 by directly constrcuting its realizable matrices, and give an easier algorithm of contents for 3-order realizable matrices. In particular, we give the realization matrix of B if it is realizable.
作者 孙峰 王学平
出处 《四川师范大学学报(自然科学版)》 CAS CSCD 北大核心 2009年第2期146-151,共6页 Journal of Sichuan Normal University(Natural Science)
基金 国家自然科学基金(10671138)资助项目
关键词 非负整数对称矩阵 0-1矩阵 可实现矩阵 容度 Nonnegative integral symmetric matrix Zero-one matrix Realizable matrix Content
  • 相关文献

参考文献4

  • 1Kelly J B. Products of zero-one matrices [ J ]. Canad J Math, 1968,20:298-329.
  • 2Boole G. Studies in logic and probability[ M]. La Salle:Open Court Publishing Company,1952.
  • 3Goodman A W. Set equations [ J ]. Am Math Monthly, 1965,72 : 607-613.
  • 4Hall M. A problem in partitions[J]. Bull Am Math Soc,1941,47:804-807.

同被引文献6

  • 1Kelly J B. Products of zero-one matrices. Canad. J. Math., 1968, 20: 298-329.
  • 2Vigneron A. Semigroup ideals and linear diophantine equations. Linear Algebra Appl., 1999, 295: 133-144.
  • 3Pison-Casares P, Vigneron-Tenorio A. N-solutions to linear systenm over Z. Linear Algebra Appl., 2004, 384: 135-154.
  • 4Chubarov D, Voronkov A. Basis of solutions for a system of linear inequalities in integers: computation and applications. Edited by Jedrzejowicz J, Szepietowski A. MFCS 2005, LNCS, 3618, 260-270, Springer, 2005.
  • 5Rybina T and Voronkov A. Fast infinite-state model checking in integer-based systems. In Baaz M. and Makowsky Johann A, editors, CSL'03, proceedings, Vol. 2803 of LNCS, pages 546-573. Springer, 2003.
  • 6Bockmayr A and Weispfenning V. Solving numerical constraints. In Robinson A. and Voronkov A, editors, Handbook of Automated Reasoning, Vol. I, pages 751-842. Elsevier Science, 2001.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部