期刊文献+

深水固井水泥性能及水化机理 被引量:33

Properties and hydration mechanism of deepwater cementing system
下载PDF
导出
摘要 针对深水固井中出现的低温、浅层水—气流动问题,测试了G级油井水泥—硫铝酸钙复合深水固井水泥体系的稠化时间、静胶凝强度、抗压强度、长期抗压强度和水泥石体积膨胀率,利用XRD手段表征了不同温度下水化产物和长期水化产物。结果表明:早期主要为硫铝酸钙矿物熟料水化生成钙矾石AFt,使水泥浆具有优异的低温早强、"直角稠化"、静胶凝强度"过渡时间"短和水泥石体积微膨胀的优点;后期主要为C3S、C2S水化生成水化硅酸钙凝胶C2SH2和Ca(OH)2,水化硅酸钙凝胶C2SH2填充在钙矾石AFt晶体间,使水泥石结构致密,促进水泥石强度持续增长。体系中主要水化产物AFt、C2SH2凝胶稳定保证了水泥石力学性能的长期稳定。 The problems of low temperature and shallow water-gas flow are concerned in deepwater cementing. The properties of the composite deepwater cementing system combining sulfoaluminate cement with Class-G oil well cement were tested, including the static gel strength, thickening time, compressive strength, long-term compressive strength and volume expansion of cement stone. The hydration products and the long-term products under different temperature were characterized by X-ray diffraction. The results demonstrate that the ettringite (AFt) produced in the early hydration of sulfoaluminate cement can enable the cement slurry to have the favorable behaviors of low temperature and early strength, right-angle-set property and short transition time of static gel strength, as well as the cement stone showing negligible volume expansion. During the latter hydration period, the calcium silicate gel (C2 SH2) and Ca(OH)2 are created from the hydration of C3 S and C2 S. C2 SH2 is closely packed in the AFt crystals to compact the structure of cement stone and promotes strength continuously. The main stable hydration products of AFt and C2SH2 can guarantee the long-term mechanical stability of cement stone.
出处 《石油学报》 EI CAS CSCD 北大核心 2009年第2期280-284,共5页 Acta Petrolei Sinica
基金 国家高技术研究发展计划(863)项目(2006AA09Z340)资助
关键词 深水固井 水泥 静胶凝强度 直角稠化特性 抗压强度 水化机理 deepwater cementing cement static gel strength right-angle set property compressive strength hydration mechanism
  • 相关文献

参考文献11

  • 1王瑞和,王成文,步玉环,程荣超.深水固井技术研究进展[J].中国石油大学学报(自然科学版),2008,32(1):77-81. 被引量:49
  • 2王成文,王瑞和,步玉环.深水低温固井水泥体系:中国,CN101054513A[P].2007-10-17.
  • 3Jim O L,Juan C F, Paulo R, et al. Cementing deepwater, lowtemperature Gulf of Mexico formations prone to shallow flows [R]. SPE 87161,2004.
  • 4Moore S,Miller M,Faul R,et al. Foam cementing applications on a deepwater subsalt well-case history[R]. SPE 59170,2000.
  • 5Ward M, Granberry V, Campos G, et al. A joint industry project to assess circulating temperatures in deepwater wells[R]. SPE 83725,2003.
  • 6Pelletier J H,Ostermeier R M,Winker C D,et al. Shallow water flow sands in the deepwater Gulf of Mexico: Some recent Shell Experience: International Forum on Shallow Water Flows, League city, Texas, USA, October 6-9,1999[C]. Texas: League City, 1999,
  • 7Krishna R, Ewout N B. Deepwater cementing challenges[R]. SPE 56534,1999.
  • 8陈朝伟,殷有泉.水泥环对套管载荷影响的理论研究[J].石油学报,2007,28(3):141-144. 被引量:25
  • 9李军,陈勉,柳贡慧,张辉.套管、水泥环及井壁围岩组合体的弹塑性分析[J].石油学报,2005,26(6):99-103. 被引量:86
  • 10张景富,俞庆森,徐明,高莉莉,肖海东.G级油井水泥的水化及硬化[J].硅酸盐学报,2002,30(2):167-171. 被引量:53

二级参考文献58

共引文献220

同被引文献294

引证文献33

二级引证文献177

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部