期刊文献+

毕赤酵母木糖还原酶定点突变改善其对双辅酶的亲和力 被引量:2

Modification of Dual-coenzyme Affinity of Xylose Reductase from Pichia stipitis by Site-directed Mutagenesis
下载PDF
导出
摘要 通过毕赤酵母(Pichia stipitis)木糖还原酶(xylose reductase,XR)基因定点突变,获得NADH高亲和力的毕赤酵母木糖还原酶(PsXR),改善了辅酶不同而导致的酿酒酵母胞内氧化还原失衡.同时克隆了PsXR编码基因,通过BLAST工具进行同源性搜索,并用生物软件进行序列比对和结构分析,确定突变位点.用融合PCR方法进行定点突变,并在大肠杆菌表达系统中进行融合表达,且对表达产物进行HIS-TAG亲和纯化,分光光度法检测酶活性,计算比活力.本研究成功获得突变XR编码基因,并收集了纯化的突变蛋白.酶活性检测和比活力计算显示,3种突变酶对2种辅酶的亲和力在一定程度上都发生了变化.与未突变的PsXR相比,3种突变酶对辅酶NADPH的亲和力均显著下降,突变酶M3对辅酶NADH的亲和力未发生变化,而突变酶M1和M4对辅酶NADH的亲和力显著升高,其中突变酶M1对NADH的亲和力明显提高,对NADPH的亲和力明显下降,其活性主要依赖辅酶NADH,提示K270R位点在XR与辅酶结合中起关键作用. In this study, we obtained the NADH-preferring xylose reductase from Pichia stipitis (PsXR) and introduced site-directed mutations designed to correct the intracellular redox imbalance caused by coenzyme differences in Saccharomyces cerevisiae. The mutation sites in cloned PsXR gene were identified by BLAST homogenous matching and molecular structure analysis. The mutations were introduced by nested PCR and the mutant proteins were expressed in E. coli then purified with a HIS-TAG column. The specific enzyme activity of the mutant proteins was assayed by spectrophotometry. The results showed that three of the mutants (M1, M3 and M4) differed in the enzyme activity, specific activity and the coenzyme affinity to NADPH or NADH. Comparing to wild-type PsXR, coenzyme affinity to NADPH was remarkably decreased in all three mutants. The coenzyme affinity to NADH in M1 and M4 was increased significantly, but changed mildly in M3. M1 showed the most remarkably increase of NADH-preferring activity and decrease of NADPH-preferring activity, demonstrating a maximum dependency to NADH. This implies that the mutation site K270R in M1 plays an important role in determining the coenzyme preference of PsXR.
出处 《中国生物化学与分子生物学报》 CAS CSCD 北大核心 2009年第3期250-256,共7页 Chinese Journal of Biochemistry and Molecular Biology
基金 国家高技术研究发展计划项目(863计划,No.2006AA020301)~~
关键词 木糖 木糖还原酶 还原型辅酶Ⅰ(NADH) 还原型辅酶Ⅱ(NADPH) xylose xylose reductase (XR) NADH NADPH
  • 相关文献

参考文献4

二级参考文献32

  • 1沈煜,郑华军,王颖,鲍晓明,曲音波,白凤武.木酮糖激酶表达水平对酿酒酵母木糖代谢产物流向的影响[J].生物化学与生物物理进展,2004,31(8):746-751. 被引量:11
  • 2张翀,邢新会.辅酶再生体系的研究进展[J].生物工程学报,2004,20(6):811-816. 被引量:21
  • 3Walfridsson M, Bao X, Anderlund M, et al. Ethanolic fermentation of xylose with Saccharomyces cerevlsiae harboring the Thermus thermophilus- xylA gene which expresses an active xylose (glucose) isomerase. Appl Environ Microbiol, 1996,62:4648 - 4651.
  • 4Marko K, Maurice T, Jasper D, et al. Evolutionary engineering of mixed-sugar utilization by a xylose-fermenting Saccharomyces cerevisiae strain. FEMS Yeast Res, 2005, 5:925 -934.
  • 5Jeffries T W, Jin Y S. Metabolic engineering for improved fermentation of pentoses by yeasts. Appl Microbiol Biotechnol,2004, 63(5) :495 -509.
  • 6Berrios-Rivera S J, Bennett G N, San K Y. Metabolic engineering of Escherichia coli: increase of NADH availability by overexpressing an NAD^ + -dependent formate dehydrogenase.Metab Eng, 2003, 4:217 - 229.
  • 7Berrios-Rivera S J, Bennett G N, San K Y. The effect of increasing NADH availability on the redistribution of metabolic fluxes in Escherichia coli chemostat cultures. Metab Eng, 2003,4 : 230 - 237.
  • 8Berrios-Rivera S J, San K Y, Bennett G N. The effect of NAPRTase overexpression on the total levels of NAD, the NADH/NAD^ + ratio, and the distribution of metabolites in Escherichia coli. Metab Eng, 2003, 4:238 -247.
  • 9Lopez D F, Kleerebezem M, de Vos, et al. Cofactor engineering: a novel approach to metabolic engineering in Lactococcis lactis by controlled expression of NADH oxidasc. J Bacteriol, 1998, 180:3804 - 3808.
  • 10Jackson B, Peake J, White A. Jackson Structure and mechanism of proton-translocating transhydrogenase. FEBS Lett, 1999, 464 : 1 - 8.

共引文献54

同被引文献48

  • 1沈煜,王颖,史文龙,刘向勇,鲍晓明,曲音波.酿酒酵母工业菌株中XI木糖代谢途径的建立[J].中国生物工程杂志,2005,25(9):69-73. 被引量:22
  • 2侯进,沈煜,鲍晓明.酿酒酵母木糖代谢工程中辅酶工程的研究进展[J].中国生物工程杂志,2006,26(2):89-94. 被引量:10
  • 3Martin GJO, Knepper A, Zhou B, et al. Performance and stability of ethanologenic Escherichia coli strain FBR5 during continuous culture on xylose and glucose[J]. Journal of Industrial Microbiology and Biotechnology, 2006,33(10) : 834-844.
  • 4Hahn-Hagerdal B, Galbe M, Gorwa-Grauslund MF, et al. Bio-ethanol-the fuel of tomorrow from the residues of today[J]. Trends in Biotechnology, 2006, 24(12):549-556.
  • 5Lee TY, Kim MD, Kim KY, et al. A parametric study on ethanol production from xylose by Pichia s tipitis [J]. Biotechnology and Bioprocess Engineering, 2000, (5) : 27-31.
  • 6Karczewska H. Some observations on pentose utilization by Ctmdida tropicalis [J]. Comptes rendus des travaux du laboratoire Carlsberg, 1959, 31 (17): 251-258.
  • 7Jeffries TW, Jin YS. Ethanol and thermotolerance in the bioconversion ofxylose by yeasts[J]. Advance in Applied Microbiology, 2000, (47) : 221-268.
  • 8Slininger PJ, Bothast R J, Okos MR, et al. Comparative evaluation of ethanol production by xylose-fermenting yeasts presented high xylose concentrations[J]. Biotechnology Letters, 1985, 7(5): 431-436.
  • 9Agbogbo FK, Coward-Kelly G, Torry-Smith M, et al. Fermentation ofglucose/xylose mixtures using Pichia stipitis[J]. Process Biochemistry, 2006, 41(11):2333-2336.
  • 10Abbi M, Kuhad RC, Singh A. Fermentation ofxylose and rice straw hydrolysate to ethanol by Candida shehatae NCL-3501 [J], Journal of Industrial Microbiology, 1996, (17): 20-23.

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部