期刊文献+

实验动物兔子心电图奇异性检测:进化谱方法 被引量:1

下载PDF
导出
摘要 基于小波变换的进化谱分析能够揭示非平稳信号特定时刻的时—频域特性.实验动物兔子左冠状动脉前降支结扎实验,可以模拟早期心肌缺血症状的不同生理变化过程.左冠状动脉病变引发心肌缺血是急性心肌梗死等冠心病的早期主要征兆.文中提出了基于连续复小波变换的进化谱估计算法,在满足时—频域不确定性原理条件下,为获得非平稳信号的瞬时频谱提供了一种有效的新方法,它能够识别生命系统数据中的局部奇异性.应用这种算法对实验动物兔子的多种心电图数据的进化谱分析结果表明,QRS波群进化谱特性的变化与早期心肌缺血有内在关联.QRS波群进化谱品质因数Q是心电图在时—频域的一个特征参数,Q数值变异可能为识别早期心肌缺血提供一种新的医学诊断参考特征.
出处 《自然科学进展》 北大核心 2009年第4期446-455,共10页
基金 国家自然科学基金资助项目(批准号:607710003)
  • 相关文献

参考文献11

  • 1Langner PH, Geselowitz DB, Mansure FT. High-frequency components in the electrocardiogram of normal subjects and of patients with coronary heart disease. Am Heart J , 1961, 62: 746- 755.
  • 2Reynolds EW, Muller BF, Captain MC, et al. High-frequency components in the electrocardiogram. A comparative study of normal and patients with myocardial disease. Circulation, 1967, 35:195- 206.
  • 3Flowers NC, Horan LG, Thomas JR , et al. The anatomic basis for high frequency components in the electrocardiogram. Circulation 1969, 39.. 531 -539.
  • 4Unser M, Aldroubi A. A review of wavelets in biomedical applications. Proc IEEE, 1996, 84:626- 638.
  • 5Tsutsumi T, Wakatsuki D, Shimojima H, et al. Analyzing timefrequency power spectrum limited in QRS complex based on the wavelet transform. Int J Bioelectromagnetism, 2004, 6 (1) : 25- 32 http: //www. ijbem, org/volume6/numberl/007, htm.
  • 6Norhashimah MS, Abdu 1 A, Yin F L. Detection of heart blocks in ECG signals by spectrum and Time-frequency analysis. 4th Student Conference on Research and Development, 2006, 61- 65.
  • 7Seedahmed SM, Qiang F, Dragomir MD, et al. A time-frequency approach for the analysis normal and arrhythmia. Proc. of the 28^th IEEE EMBS Annual International Conference. 2006, 6509- 6512.
  • 8Priestley MB. Wavelets and time-dependent spectral analysis. J Time Series Analysis, 1996, 17(1): 85- 103.
  • 9Antman EM, Anbe DT, Armstrong PW, et al. ACC/AHA guidelines for the management of patients with ST-elevation myocardial infarction executive summary: A report of the American College of Cardiology American Heart association. Task Force on Practice Guidelines (Writing Committee to Revise the 1999 Guidelines for the Management of Patients with Acute Myocardial Infarction). Circulation, 2004, 110(5) : 588-636.
  • 10Daubbeehies I. Ten Lectures on Wavelets. Philadelphia: Society for Industrial and Applied Mathematics, 1992.

同被引文献14

  • 1刘新元,谢柏青,戴远东,王福仁,李壮志,马平,谢飞翔,杨涛,聂瑞娟.射频SQUID心磁图数据自适应滤波研究[J].物理学报,2005,54(4):1937-1942. 被引量:3
  • 2Holter N J. New methods for heart studies. Science, 1961, 134:1214.
  • 3Baule G M, McFee R. Detection of the magnetic field of the heart. Am Heart J, 1963, 66:95.
  • 4Cohen D, Edelsack E A, Zimmerman J E. Magnetocardiograms taken inside a shielded room with superconduction point-contact magnetometer. Appl Phys Lett, 1970, 16:278.
  • 5Karsten S, Alex I. Braginski, biomagnetism using SQUIDs: Status and perspectives. Supercond Sci Technol, 2006, 19:160--170.
  • 6Pola A, Macerata A, Emdin M. Estimation of the power spectral in nonstationary cardiovascular time series: Assessing the role of the time-frequency representations (TFR). IEEE Trans Biomed Eng, 1996, 43:46-59.
  • 7Friedman B H, Allen M T, Christie I C, et al. Validity concerns of common heart-rate variability indices addressing quantification issues in time-and frequency-domain measures of HRV. IEEE Eng Med Biol, 2002, 21:35--40.
  • 8Priestley M B. Wavelets and time-dependent spectral analysis. J Time Series Analysis, 1996, 17:851--03.
  • 9Kosch O, Meindl P, Steinhoff U, et al. Physical aspects of cardiac magnetic fields and electric potentials. In: The 12th International Conference on Biomagnetism, 2000, August 13- 17, Helsinki, Finland.
  • 10Goernig M, Liehr M, Tute C, et al. Magnetocardiography based spatiotemporal correlation analysis is superior to conventional ECG analysis for identifying myocardial injury. Inter J Bioelectromagne, 2009, 11: 107--111.

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部