期刊文献+

7150铝合金剥蚀行为及腐蚀机理研究 被引量:12

EXFOLIATION CORROSION BEHAVIOR OF 7150 Al ALLOY
下载PDF
导出
摘要 研究了T6、T73及RRA处理(175℃回归)7150铝合金在EXCO溶液中的剥落腐蚀行为、η相与铝基体的电化学偶合行为及其相应的腐蚀机理.结果表明,7150-T6铝合金中η相在晶界连续分布,存在一个由晶界阳极性的η相与其边缘铝合金基体组成的腐蚀电偶而形成的腐蚀活性通道,导致7150-T6铝合金具有最大的晶间腐蚀敏感性及剥蚀敏感性;而T73及RRA处理导致7150铝合金晶界η相聚集而分布不连续,因而其晶间腐蚀及剥蚀敏感性大幅度降低.7150-RRA(175℃回归3小时)铝合金耐蚀性与7150-T73接近;7150铝合金中η相自腐蚀电位负于铝基体电位,其自腐蚀电流大于铝基体自腐蚀电流,在7150铝合金腐蚀过程中作为阳极而发生阳极溶解. The exfoliation corrosion behavior of 7150 Al alloy after treatments of T6,T73 and RRA(with retrogression at 175℃ ) was investigated. The electrochemical behavior of a simulated η( MgZn2 ) precipitate in NaCl solution and the coupling behavior of the coupled system of η-phase and Al-matrix were examined. The corrosion morphology of a simulated Al alloy with qq-phase particles was also observed. The results show that 7150-T6 Al alloy possesses great sensitivity to exfoliation corrosion ,7150-T73 Al alloy has low susceptibility to exfoliation corrosion, which is close to that of 7150-RRA Al alloy with retrogression at 175℃ for 3 h. The corrosion potential of η precipitate in 7150 Al alloy is negative with respect to that of Al matrix, and its corrosion current density is greater. Therefore, the precipitate serves as anodic phase and anodic dissolution occurs on its surface. The precipitate is distributed continuously along the grain boundary of 7150-T6 Al alloy,and there exists an active corrosion path resulting from the galvanic action between precipitates and their adjacent Al matrix, resulting in its greatest sensitivity to intergranular corrosion and exfoliation corrosion. The precipitate of the T73 and RRA treated 7150 Al alloys is distributed discontinuously at the grain boundary, and their susceptibility to intergranular corrosion and exfoliation corrosion is greatly lowered.
出处 《腐蚀科学与防护技术》 CAS CSCD 北大核心 2009年第2期107-109,共3页 Corrosion Science and Protection Technology
基金 中南大学创新计划项目(LB07079) 宁夏自然科学基金项目(NZ0618) 宁夏大学自然基金项目(LG0502)
关键词 7150铝合金 剥蚀 腐蚀机理 7150 A1 alloy exfoliation corrosion corrosion mechanism
  • 相关文献

参考文献3

二级参考文献18

  • 1[1]Staley J T,Hunsicker H Y,Brown R H.U.S.Patent [P],1975,(3):881,966.
  • 2[2]Hunsicker H Y.Rosenhain Centenary Conf.[C]:London,UK,September 1975,The Metals Society:245-262.
  • 3[3]Burleigh T D.Corrosion [J],1991,47,(2):89-98.
  • 4[4]Najjar D,Magmin T,Warner T J.Mater.Sci.Eng.A [J],1997,A238:293-302.
  • 5[5]Cina B.Reducing the susceptibility of alloy,particularly aluminum alloys to stress corrosion cracking [P],Pat.3856584,US patent Office,Washington,DC,24 December 1974.
  • 6[6]Park J K and Ardell A J.Metall Trans.A [J],1984,15A:1531-1543.
  • 7[7]Ohimishi T,Ibarakj Y and Ito T.Mater.Trans.[J],JIM 1989,(8):601-607.
  • 8[8]Lukasak D A and Hart R M.Aerosp.Eng.[J],1991,11,(9):21-24.
  • 9[9]Degischer H P,Lacom W,Zahra A,Zahra C Y.Z.Metallkd,1980,71,231.
  • 10[10]Deelasi R and Acller P N.Met.Trans A [J],1977,(8):1177.

共引文献69

同被引文献122

引证文献12

二级引证文献58

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部