期刊文献+

基于数据挖掘技术的交通流数据分析研究 被引量:1

Analysis of Traffic Flow Data Based on Data Mining
下载PDF
导出
摘要 利用数据挖掘技术,通过对历史数据的分析预测下一个时间间隔的交通流状况,可以为交通流诱导和信息发布打下基础;通过对路口流量历史数据的聚类分析可得出单路口TOD控制算法的最优时段分段和各时段中的最优控制参数,从而优化单路口控制算法的控制效果;通过对路段流量历史数据之间的关联分析,可得出路段之间的关联规则,从而可以由一个路段的流量推断其关联路段的流量,为实时交通流诱导和信息发布提供实时依据。 The prediction of traffic flow at the next time interval based on the analysis of historic data and the application of data mining technology is of great help in traffic division and information distribution. The optimal time distribution by TOD control algorithm at single junctions and the optimal control parameters can be obtained by cluster analysis of historical data at intersections, and in this case, the control algorithm can be optimized. Correlation rules can be drawn by correlation analysis of historical data for traffic at different road sections, and hence the traffic of correlated road sections can be estimated by specific traffic at a known section. Such an estimation can provide references for the real-time traffic division and information distribution.
出处 《淮海工学院学报(自然科学版)》 CAS 2009年第1期31-34,共4页 Journal of Huaihai Institute of Technology:Natural Sciences Edition
基金 公安部应用创新计划项目(2007YYCXSDST057)
关键词 数据挖掘 交通流 预测 data mining traffic flow prediction
  • 相关文献

参考文献4

  • 1TECHAPICHETVANICH K,DATTA A. Visual mining of market basket association rules [J ]. Lecture Notes in Computer Science, 2004,30(4) : 14-17.
  • 2林勇,蔡远利,黄永宣.基于卡尔曼滤波的动态OD矩阵估计[J].系统工程理论与实践,2003,23(10):135-139. 被引量:10
  • 3LIN Yong, SONG Houbing. DynaCHINA: real-time traffic estimation and prediction[J]. IEEE Pervasive Computing, 2006,4 : 65.
  • 4KANTARDZIC M. Data Mining: Concepts, Models, Methods, and Algorithms [M].北京:清华大学出版社,2003.

二级参考文献5

  • 1Kalidas Ashok. Estimation and Prediction of Time-Dependent Origin-Destination Flows[D]. Massachusetts Institute of Technology, Cambridge, M A, 1996.
  • 2Okutani I, Stephanades Y. Dynamic prediction of traffic volume through kalman filtering theory[J]. Transportation Research, 1984, 18B: 1- 11.
  • 3Pushkin Kachroo. Arvind Narayanan, and Kaan Ozbay. Investigating the Use of Kalman Filtering Approaches for Dynamic Origin-Destination Trip Table Estimation[R]. Center for Transportation Research, Virginia Tech, Blacks-burg, 1995.
  • 4Ashok K, Ben-Akiva ME. Dynamic OD matrix estimation and prediction for real-time traffic management systems[A]. Proceedings of 12^th International Symposium on Transportation and Traffic Theory[C]. Amsterdam Elsevier Science, 1993. 465-484.
  • 5Gang-Len Chang, Xianding Tao. Estimation of Dynamic O-D Distributions for Urban Networks[A]. Proceedings of 13th International Symposium on Transportation and Traffic Theory[C], Amsterdam: Elsevier Science, 1996. 141-160.

共引文献9

同被引文献1

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部