期刊文献+

集成一次性微流控芯片的便携式荧光检测系统(英文) 被引量:4

Portable Fluorescence Detection System Integrated with Disposable Microfluidic Chip
下载PDF
导出
摘要 本文研究了一种新型的生物化学分析系统,该系统包括便携式荧光检测仪和带光纤的微流控芯片.采用基于MEMS技术的微泵将待测物与荧光试剂的混合物导入微流控芯片,采用PMT检测受激发产生的荧光,荧光强度与待测物浓度成一定比例.激发光则通过光纤将光源LED光信号导入微沟道中.随着液体在微沟道中的流动,可连续分析和检测不同的样品.该系统检测1~1000μg/L浓度的荧光素具有0.966的相关系数.基于荧光猝灭原理,该系统还可检测浓度为5ng/μL的硝基化合物.该生化分析系统除具有便携式和一次性微流控芯片优点外,还具有成本低.试剂、样品消耗量少,且分析时间短等优点该系统能实现现场检测,可应用于临床诊断。 A novel biochemical analysis system including a portable fluorescence detection instrument and a microfluidic chip integrated with an optical fiber was developed. When fluid sample containing analyte and fluorescent reagent was transported to the microfluidic chip by a micro-electro-mechanical system (MEMS)-based micropump, the fluorescent light, which was induced by the excitation light from light emitting diode (LED) coupled into the microchannel through an optical fiber, was detected by photomultiplier tube (PMT). The intensity of fluorescent light is related to the concentration of the analyte. Along with fluid flowing in the microchannel, different samples could be continually detected and analyzed. The system was able to detect fluorescein within the concentration range from 1 μg/L to 1 000 μg/L and the correlation coefficient was 0.966. And then 5 ng/μL nitro compound solution was detected using this system based on the principle of fluorescence quenching. This biochemical analysis system has several advantages of lower cost, lower reagent and sample consumption, and less analytical time besides portability and disposability, which enables the implementation of on-site detection in the fields of point-of-care clinical testing, environmental testing, and biological warfare agent detection.
出处 《纳米技术与精密工程》 EI CAS CSCD 2009年第2期127-131,共5页 Nanotechnology and Precision Engineering
基金 国家自然科学基金资助项目(60701019) 中国科学院"优秀博士学位论文,院长奖获得者科研启动专项资金" 中国科学院电子学研究所知识创新工程领域前沿项目
关键词 微流控 微机电系统 荧光检测 芯片 microfluidic MEMS fluorescence detection chip
  • 相关文献

参考文献14

  • 1Manz A,Fettinger J C,Verpoorte E,et al.Micromachining of monocrystalline silicon and glass for chemical analysis systems:A look into next century's technology or just a fashionable craze?[J].Trends Anal Chem,1991,10(5):144-149.
  • 2Daw R,Finkelstein J.Lab on a chip[J].Nature,2006,442 (7101):367-418.
  • 3Chert X,Cui D F,Liu C C,et al.Continuous flow microfluidic device for cell separation,cell lysis and DNA purification[J].Analytica Chimica Acta,2007,584 (2):237-243.
  • 4Wilding P,Kricka L J,Cheng J,et al.Integrated cell isolation and polymerase chain reaction analysis using silicon microfilter chambers[J].Anal Biochem,1998,257(2):95-100.
  • 5Chert X,Cui D F,Liu C C,et al.Microfahrication and characterization of porous channels for DNA purification[J].Journal of Micromechanics and Microengineering,2007,17(1),68-75.
  • 6Liu R H,Yang J,Lenigk R,et al.Self-contained,fully integrated hiochip for sample preparation,polymerase chain reaction amplification,and DNA microarray detection[J].Analytical Chemistry,2004,76(7):1824-1831.
  • 7Bums M A,Johnson B N,Brahlnasandra A N,et al.An integrated nanoliter DNA analysis device[J].Science,1998,282(5388):484-487.
  • 8Linder V,Verpoorte E,Thormann W,et al.Surface biopassivation of replicated poly(dimethylsiloxane) microfluidic channels and application to heterogeneous immunoreaction with on-chip fluorescence detection[J].Anal Chem,2001,73(17):4181-4189.
  • 9Altschuh D,Oncul S,Demchenko A E Fluorescence sensing of intermolecular interactions and development of direct molecular biosensors[J].J Mol Recognit,2006,19(6):459-477.
  • 10Jiang G,Attiya S,Ocvirk G,et al.Red diode laser induced fluorescence detection with a confocal microscope on a microchip for capillary electrophoresis[J].Biosens Bioelectronics,2000,14(10):861-869.

同被引文献40

  • 1韦鹤,王晓东,刘冲,廖俊峰.塑料微流控芯片的超声波焊接键合的仿真[J].中国机械工程,2005,16(z1):82-85. 被引量:5
  • 2王晓东,罗怡,刘冲,马骊群,温敏,王立鼎.塑料(PMMA)微流控芯片微通道热压成形工艺参数的确定[J].中国机械工程,2005,16(22):2061-2063. 被引量:30
  • 3Zhang Zongbo, Luo Yi, Wang Xiaodong, et al. Ultrasonic bonding of polymer microfluidic chips [ C ]// International Conference on Electronic Packaging Technology & High Density Packaging. Shanghai, China, 2005 : 1-5.
  • 4Truckenmtiller R, Ahrens R, Cheng Y, et al. An ultrasonic welding based process for building up new class of inert fluidic microsensors and actuators from polymers [ J]. Sensors and Actuators A:Physical, 2006, 132 (1) : 385-392.
  • 5Truekenmiiller R , Cheng Y, Ahrens R , et al. Micro ultrasonic welding : Joining of chemically inert polymer microparts for single material fluidic components and systems [ J ].Microsystem Technologies, 2006, 12 ( 10/11 ) : 1027-1029.
  • 6Chuah Y K, Chien L H. Effect of the shape of the energy director on far field ultrasonic welding of thermoplastics [ J ]. Society of Plnstic Engineering, 2000, 40 ( 1 ) : 157-167.
  • 7Nonhof C J, Luiten G A. Estimates for process conditions during the ultrasonic welding of thermoplastics [ J ]. Polymer Engineering and Science, 1996, 36 (9) : 1177-1183.
  • 8Holger Becker, Claudia GLirtner. Polymer microfabrication technologies for microflnidie systems[J]. Analytical and Bio- analytical Chemistry, 2008,390 ( 1 ) :89-111.
  • 9Luo Yi,Wang Xiaodong,Yang Fan. Microfluidie chip made of COP (cyclo-olefin polymer) and comparion to PMMA (polymethylmethacrylate) microfluidic chip [ J ]. Journal of Materials Processing Technology, 2008,208 ( 1/2/3 ) : 63-69.
  • 10Michaeli W,Opfcrmann D. Micro assembly injection mould- ing[J]. Microsystem Technologies, 2006,12(7) :616-619.

引证文献4

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部