期刊文献+

十和田近等基因系糙米锌含量QTL定位 被引量:8

Identification of QTLs about Zinc Content in Brown Rice for Near-isogenic Lines for Towada
下载PDF
导出
摘要 以十和田为轮回亲本,丽粳2号为供体亲本培育出糙米锌含量近等基因系群体BC5F6为材料,从遍布水稻12条染色体上的600对引物中筛选到一个与糙米锌含量有关的SSR标记RM4608。根据其在水稻染色体上的位置,结合PCR扩增结果又发现了与糙米锌含量有关的4个SSR标记(RM19491,RM19489,RM6119和RM19487)。用MAPMAKER3.0软件做出了这5个标记的连锁群,最后采用混合线性模型定位法找到了糙米锌含量的QTL位点。QTL分析结果显示:该位点位于6号染色体上RM4608和RM6119标记之间,贡献率为5%,为新发现的与糙米锌含量有关的微效基因位点,暂命名为qZINC-6。同时与糙米铬和镁含量有关的QTL位点也被发现,其中糙米铬含量QTL位于标记RM19489和RM19491之间,贡献率为9%,是一个主效基因;糙米镁含量QTL位于标记RM4608-RM6119之间,是一个微效基因,贡献率为4%。 With the Near-isogenic lines (BCsF6) populations of zinc content in brown rice (which were bred with Towada as recurrent parent and Lijing2 as donor parent) as experiment material, a SSR marker RM4608, which correlated with zinc content in brown rice, was found from 600 primers distributed in 12 chromosomes office. According to its position in rice chromosome and PCR amplification results, we also found four SSR markers (RM19491, RM19489, RM6119 and RM19487) which correlated with zinc content in brown rice. We use software MAPMAKER3.0 to work out a linkage group of the five markers, with the mixed linear model mapping method, finally we found the locus of QTL related to zinc content in brown rice. QTL analysis showed that this locus was between RM4608 and RM6119 of the sixth chromosome and its percentage of variance explained was 5%. It was a newly-found mini-efficient gene related to zinc content in brown rice and was named as qZINC-6. Meanwhile QTL loci related to chromium and magnesium content in brown rice were also found the QTL related to chromium content in brown rice located between RM19489 and RM19491, as a major-efficent gene, it's percentage of variance explained was 9%. The QTL related to magnesium content in brown rice located between RM4608 and RM6119, as a mini-efficient gene, its percentage of variance explained was 4%.
出处 《分子植物育种》 CAS CSCD 2009年第2期264-268,共5页 Molecular Plant Breeding
基金 国家自然科学基金项目(30660092) 云南省院省校合作项目(2006YX12) 人才培引项目(2005PY01-14)资助
关键词 近等基因系 糙米 锌含量 混合线性模型 数量性状位点 Near-isogenic lines, Brown rice, Zinc content, Mixed linear model, Quantitative traits loci
  • 相关文献

参考文献18

  • 1范云六.以生物强化应对隐性饥饿[J].中国学术期刊文摘,2007,13(15). 被引量:4
  • 2Grotz N., Fox T., Connolly E., Park W., Guerinot M.L., and Eide D., 1998, Identification of a family of zinc transporter genes from A rabidopsis that respond to zinc deficiency, Proc. Natl. Acad. Sci., USA, 95(12): 7220-7224
  • 3Lucca P., Hurrell R., and Potrykus I., 2001, Approaches to improving the bioavailability and level of iron in rice seeds, Journal of the Science of Food and Agriculture, 81:828-834
  • 4Mansur L.M., Orf J.H., Chase K., Jarvik T., Cregan P.B., and Lark K.G., 1996, Genetic mapping of agronomic traits using recombinant inbred lines of soybean, Crop Sci., 36 (5): 1327-1336
  • 5Pedas P., Ytting C.K., Fuglsang A.T., Jahn T.P., Schjoerring J.K., and Husted S., 2008, Manganese efficiency in barley: identification and characterization of the metal ion transporter HvIRT1, Plant Physiol., 148(1): 455-466
  • 6Ramesh S.A., Shin R., Eide D.J., and Schachtman D.P., 2003, Differential metal selectivity and gene expression of two zinc transporters from rice, Plant Physiol., 133(1): 126-134
  • 7Sakamoto A., Okumura T., Kaminaka H., and Tanaka K., 1995, Molecular cloning of the gene (SodCcl) that encodes a cytosolic copper/zinc-superoxide dismutase from rice (Oryza sativa L.), Plant Physiol., 107(2): 651-652
  • 8Sakamoto A., Okumura T., Ohsuga H., and Tanaka K., 1992a, Genomie structure of the gene for copper/zine-superoxide dismutase from rice, FEBS Letters, 301(2): 185-189
  • 9Sakamoto A., Ohsuga H., and Tanaka K., 1992b, Nucleotide sequences of two cDNA clones encoding different Cu/Zn-superoxide dismutases expressed in developing rice seed (Oryza sativa L.), Plant Mol. Biol., 19:323-327
  • 10Sigari-Avendano B., 2000, Tagging high zinc content in the grain, and zinc deficiency tolerance genes in rice (Oryza sativa L.) using simple sequence repeats (SSR); Thesis for M.S., University for the Philippines, Supervisor: BarrionA.A., pp. 1-77

二级参考文献17

  • 1United States Environmental Protection Agency (USEPA).Cleaning Up the Nation's Sites: Markets and Technology Trends. Washington D C: Office of Solid Waste and Emergency Response, 1997.
  • 2Thomas S B, Nield J, Barber J. Iron deficiency induces the formation of an antenna ring around trimeric photosystem I in cyanobacteria. Nature, 2001, 412: 743- 745.
  • 3Ma J F, Ryan P R, Delhaize E. Alumunum tolerance in plants and the complexing role of organic acids. Trends Plant Sci,2001, 6: 273-278.
  • 4World Health Organization (WHO). Web site: http:// www.who.int/nut/ida.btm, 2002.
  • 5Graham R D. Biofortification: a global challenge program.IRRN, 2003,28(1): 4-8.
  • 6Zimmermann M B, Hurrel R F. Improving iron, zinc and vitamin A nutrition through plant biotechnology. CurrOpin Biotechnol, 2002,13(2): 142-145.
  • 7IRRI. http://www.knowledgebank.irri.org/factsheets/Health and Nutrition/Human Nutrition and Rice. htm,2004.
  • 8Welch R M. Breeding strategies for biofortified staple plant foods to reduce micronutrient malnutrition globally. J Nutr, 2002,132: S495-S499.
  • 9Lonnerdal B. Genetically modified plants for improved trace element nutrition. J Nutr, 2003,133(Suppl 1): 1490.
  • 10Donald K. The importance of rice. Science, 2002, 296: 13.

共引文献78

同被引文献152

引证文献8

二级引证文献41

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部