期刊文献+

基于取向组件的三维本构模型

3D constitutive modeling based on orientational components
下载PDF
导出
摘要 研究基于取向组件的三维本构建模方法,引入能考虑最基本三维变形效应的4类基本元件(Basic Unit,BU),派生出能充分体现局部取向上材料力学特性的组件,基于变形能叠加原理导出宏观刚度矩阵,建立跨尺度的三维本构模型.该模型采用组件和取向密度函数实现对局部取向上材料特性的描述,在此基础上建立经典弹性理论中材料的几类特殊性质的严格定义,研究表明这些定义与经典弹性理论相容. An approach in modeling 3D investigated. Four kinds of Basic Unit(BU) into the approach. The components used to constitutive relation based on orientational components is that meet the most basic 3 D deformation effect are introduced fully describe the mechanical characteristics of material at local orientations are derived from the units. The macroscopic stiffness matrix is deduced based on the superposition principle of deformation energy. Then a cross-scale 3D constitutive model is created in which the components and the relevant orientational density functions are used to describe the mechanical characteristics of material at local orientations. Several typical mechanical characters of material in classical elasticity theory are strictly defined. The study indicates that these definitions are consistent with classical elasticity theory.
作者 程纬
出处 《计算机辅助工程》 2009年第1期5-13,共9页 Computer Aided Engineering
基金 国家自然科学基金重大研究计划培育项目(90715022)
关键词 本构关系 取向密度函数 元件 组件 constitutive relation orientational density function unit component
  • 相关文献

参考文献20

  • 1ISHIKAWA H, SASAKI K. Deformation induced anisotropy and memorized back stress in constitutive model[ J ]. Int J Plasticity, 1998, 14 (7) : 627 -646.
  • 2COX B N, GAO Huajian, GROSS D, et al. Modern topics and challenges in dynamic fracture[J]. J Mech & Phys Solids, 2005, 53(3) : 565- 596.
  • 3ESHELBY J D. The determination of the elastic field of an ellipsoidal inclusion, and related problems [ C ]//Proc R Soc, Mathematical & Physical Sciences: Series A. London: Royal Soc Publishing, 1957(241 ) : 376-396.
  • 4ESHELBY J D. The elastic field outside an ellipsoidal inclusion [ C ]//Proc R Soc, Mathematical & Physical Sciences: Series A. London: Royal Soc Publishing, 1959(252) : 561-569.
  • 5ESHELBY J D. Elastic inclusions and inhomogeneities[ C ]//Progress in Solid Mechanics II, Amsterdam, 1961 : 87-140.
  • 6MORI T, TANAKA K. Average stress in matrix and average elastic energy of materials with misfitting inclusions[ J]. Acta Metallurgica, 1973, 21 (5) : 571-574.
  • 7MURAT. Micromechanics of defects in solids[ M]. Hague, Netherlands: Martinus Nijhoff Publishers, 1987.
  • 8MURA T, SHODJA H M, HIROSE Y. Inclusion problems[J]. Appl Mech Rev: Part 2, 1996, 49(10) : S118-S127.
  • 9CHRISTENSEN R M. Mechanics of composite materials[ M]. Malabar, India: Krieger Publishers, 1991.
  • 10DUNN M L, LEDBETrER H. Elastic-plastic behavior of textured short-fiber composites[ J]. Acta Mat, 1997, 45 (8) : 3327-3340.

二级参考文献11

共引文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部