期刊文献+

电子商务中点击流数据仓库的应用研究

Research on the application of Click stream data warehouse in the E-commerce
下载PDF
导出
摘要 电子商务网站逐渐成为商务智能中数据量最大的地方之一.把数据仓库技术引入电子商务应用中,把用户在电子商务网站上的点击流(Click Stream)和Web日志文件作为数据源,利用高效的改进的关联规则算法,可以有效地分析出其中蕴涵的如用户行为模式这样的知识.利用这些知识,商务人员能够拓展他们的市场,改善客户关系,降低成本,使操作流水化,有效地辅助其改进商业策略。 Website gradually becomes one of the places containing the biggest amount of data in business intelligence. Introduces the data warehousing technologies into the applications of e-business and take the click stream data and web log files of the website as the data source of data warehouse with the efficient association rule algorithm, knowledge such as users' using patterns can be deduced. With these knowledge, business men can expand the business markets, develop relations with customers, low their cost, and make their operations flow fluently and enhances their business strategies.
作者 白连红 徐澍
出处 《吉林建筑工程学院学报》 CAS 2009年第1期57-61,共5页 Journal of Jilin Architectural and Civil Engineering
关键词 点击流 数据仓库 关联规则 APRIORI算法 click stream, data warehouse association rule apriori algorithm
  • 相关文献

参考文献6

  • 1[美]Mark Sweiger,Mark R.Madsen著.点击流数据仓库[M].陆昌辉,张光剑,陈佐,张丽译.北京:电子工业出版社,2004.
  • 2Mobasher B,Cooley R,Srivastava J.Automatic Personalization Based on Web Usage Mining[J].Communications of the ACM,2000,43(8):142-151.
  • 3Masseglia F,Tanasa D,Trouses B.Web Usage Mining:Sequential Pattern Extraction with a Very Low Support[C].Proceedings of the 6th Asia-Pacific Web Conference,2004:513-522.
  • 4Huang J Z,Yang Q,Ng M,et al.A Data Cube Model for Prediction-based Web Prefetching[J].Journal of Intelligence Information Systems,2003,20(1):11-30.
  • 5吴小波,徐维祥.多支持度关联规则在网络使用挖掘中的应用[J].计算机工程与应用,2005,41(31):164-167. 被引量:9
  • 6辛志,刘少辉,史忠植.关联规则算法的实现与改进[J].计算机工程与应用,2002,38(24):190-192. 被引量:14

二级参考文献16

  • 1(加)JIAWEIHAN NICHELINE KEMBER范明 孟小锋等译.数据挖掘概念与技术[M].北京:机械工业出版社,2001..
  • 2R Agrawal,T Imielinski,A Swami.Mining association rules between sets of items in large databases[C].In:Proc 1993 ACM-SIGMO D Int Conf Management of Data(SIGMOD'93),Washington,DC, 1993
  • 3R Agrawal,R Srikant. Fast Algorithms for Mining Association Rules [C].In: Proceedings of the VLDB Conference,Santiago, Chile, 1994:487~499
  • 4Lebeck A R,Wood D A.Cache Profiling and the SPEC Benchmarks:A Case[J].IEEE Computer, 1994; 27 (10): 15~26
  • 5J Han,M Kamber. Data Mining Concepts and Techniques[M].Morgan Kaufmann Publisher,2001
  • 6J S Park,M S Chen,P S Yu.An effective hash-based algorithm for mining association rules[C].In:Proc 1995 ACM-SIGMOD Int Conf Management of Data,San Jose,CA, 1995:175~186
  • 7M J Zaki.Parallel and distributed association mining:A survey[J].IEEE Concurrency,Special Issue on Parallel Mech-anisms for Data Mining, 1999 ;7(4): 14~25
  • 8A Savasere,E Omiecinski,S Navathe. An efficient algorithm for mining association rules in large databases[C].In:Proceedings of the 21st VLDB Conference ,Zurich,Switzerland, 1995:432~444
  • 9Srikant R,Agrawal R.Mining Quantitative Association Rules in Large Relational Tables[J].Proceedings of ACM SIGMOD International conference on Management of Data, 1996:1~12
  • 10Lee W,Stolfo S J,Mok K W.A data mining framework for building intrusion detection models[C].In:Proceedings of the 1999 IEEE Symposium on Security and Privacy,Oakland,CA USA ,1999 :120~132.

共引文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部