期刊文献+

基于改进型中值滤波算法的图像去噪 被引量:9

Image denoising based on modified median filter algorithm
下载PDF
导出
摘要 去噪算法在图像处理中占有极其重要的地位。为了对含有高斯白噪声和脉冲噪声的图像进行去噪,在小波软阈值去噪算法的基础上,提出一种基于噪声个数判断的改进型中值滤波算法。仿真结果表明,该算法能够同时抑制高斯白噪声和脉冲噪声,可以更好地保留图像的边缘细节,与小波软阈值算法、小波硬阈值算法、中值滤波算法相比,具有更好的去噪性能。 Denoising algorithm is very important in image processing. In order to denoise the image with Gaussian white noise and impulse noise, on the basis of wavelet soft threshold algorithm, a modified median filter algorithm is proposed based on noise number-judgement. The simulation results show that the proposed algorithm can suppress Gaussian white noise and pulse noise simultaneously and retain the edge details of image. The denoising performance is more effective than that of wavelet soft threshold algorithm, wavelet hard threshold algorithm and median filter algorithm.
作者 张天瑜
出处 《长春工业大学学报》 CAS 2009年第1期48-52,共5页 Journal of Changchun University of Technology
关键词 图像去噪 噪声图像 中值滤波算法 噪声个数判断 小波软阈值算法 小波硬阈值算法 image denoising noise image median filter algorithm noise number-judgement wavelet soft threshold algorithm wavelet hard threshold algorithm.
  • 相关文献

参考文献13

  • 1Wei D. , Rajashekar U. , Bovik A. C. Wavelet denoising for image enhancement [M]. Second Edition. [S. ]. ]: Handbook of Image and Video Processing, 2005 : 157-165.
  • 2Choi H. , Bovik A. C. Wavelet image processing [M]. [S. l. ] : Microscope Image Processing, 2008: 79-111.
  • 3Chen G. Y. , Bui T. D. , Krzyak A. Image denoising with neighbour dependency and customized wavelet and threshold [J ]. Pattern Recognition, 2005,38 ( 1 ) : 115-124.
  • 4Bedok E. , Yuksel M. E. Impulsive noise suppression from images with Jarque-Bera test based median filter[J]. AEU-International Journal of Electronics and Communications, 2005,59 (2) : 105-110.
  • 5Lukac R. , Smolka B. , Plataniotis K. N. Sharpening vector median filters[J]. Signal Processing, 2007,87(9) : 2085-2099.
  • 6Lin T. C. A new adaptive center weighted median filter for suppressing impulsive noise in images[J]. Information Sciences, 2007,177 (4) : 1073-1087.
  • 7Yuan S. Q. , Tan Y. H. The solutions of equation- based noise detector for an adaptive median filter [J]. Pattern Recognition, 2006,39 ( 11 ) : 2252-2257.
  • 8Yuan S. Q. , Tan Y. H. Impulse noise removal by a global-local noise detector and adaptive median filter[J]. Signal Processing,2006,86(8) :2123-2128.
  • 9Chan R. H. , Ho C. W. , Nikolova M. Salt-and- pepper noise removal by median-type noise detectors and detail-preserving regularization [ J ]. IEEE Transactions on Image Processing, 2005, 14 (10) : 1479-1485.
  • 10Lazzaro D. , Montefuseo L. B. Edge-preserving wavelet thresholding for image denoising [J]. Journal of Computational and Applied Mathematics, 2007,210(1-2) : 222-231.

二级参考文献12

  • 1Ferrando S E, Pyke R. Ideal denoising for signals in sub-Gaussian noise [J]. Applied and Computational Harmonic Analysis,2008,24(1): 1-13.
  • 2Bey N Y. Extraction of signals buried in noise. Part Ⅰ: Fundamentals [J]. Signal Processing, 2006, 86 (9) :2 464-2 478.
  • 3Bey N Y. Extraction of signals buried in noise. Part Ⅱ: Experimental results [J]. Signal Processing, 2006,86(10):2 994-3 011.
  • 4Mallat S. A wavelet tour of signal processing [M]. 2nd Edition. California: Academic Press, 1999 : 163- 175.
  • 5Xu Y S, Weaver J B, Healy D M, et al. Wavelet transform domain filters: a spatially selective noise filtration technique[J]. IEEE Transactions on Image Processing, 1994,3 ( 6 ) : 747-758.
  • 6Mallat S, Hwang W L. Singularity detection and processing with wavelets[J]. IEEE Transactions on Information Theory, 1992,38(2) :617-643.
  • 7Gao H Y, Bruce A G. Waveshrink with firm shrinkage[J]. Statistica Sinica, 1997, 7 (4): 855- 874.
  • 8Gao H Y. Wavelet shrinkage denoising using the non-negative garrote[J]. Journal of Computational and Graphical Statistics, 1998,7(4) : 469-488.
  • 9Azzalini A, Farge M, Schneider K. Nonlinear wavelet thresholding: A recursive method to determine the optimal denoising threshold[J]. Applied and Computational Harmonic Analysis, 2005,18(2) : 177-185.
  • 10Berkner K, Wells Jr R O. Smoothness estimates for soft-threshold denoising via translation-invari- ant wavelet transforms[J]. Applied and Computational Harmonic Analysis, 2002,12(1) : 1-24.

共引文献1

同被引文献77

引证文献9

二级引证文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部