期刊文献+

关于质心体和投影体的等周不等式

Isoperimetric Inequalities for Centroid Bodies and Projection Bodies
下载PDF
导出
摘要 等周不等式是凸几何等相关学科极其重要的结论,关于等周不等式的研究很多都是关于其平面情形,建立了关于质心体ΓK和截面体IK的等周不等式. Isopefimetric inequality is a very important result in convex geometry and its related topics, there are a lot of researchs focusing on it since it plays a key role in convex geometric analysis. In this paper, the isopefimetric inequalities for centroid bodies, intersection bodies and p-projection bodies are established.
作者 朱保成 李妮
出处 《湖北民族学院学报(自然科学版)》 CAS 2009年第1期13-17,共5页 Journal of Hubei Minzu University(Natural Science Edition)
基金 国家自然科学基金项目(10801140)
关键词 凸体 MINKOWSKI不等式 等周不等式 质心体 投影体 convex body Minkowski inequality isoperimetric inequality centroid body projection body
  • 相关文献

参考文献13

  • 1Schneider B. Convex Bodies:The Brunn - Minkowski theory[M]. Cambridge:Cambridge Univ Press,1995.
  • 2Lutwak E. The Brunn- Minkowski -Fhey Ⅰ:mixed volumes and the Minkowski problem[J]. J Diffelential Geom, 1993,38:131 -150.
  • 3Burago Y D,Zalgaller V A. Gennetric Inequalities[M]. New York:Sprinser,1988.
  • 4Chavel L I soperi etrie Inequalities[M]. Cambridge:Cambridge University Press,2001.
  • 5Osserman R. The Isoperimetrlc Inequality[J]. Bull Amer Math Soc,1978,84:1 182 - 1238.
  • 6Gardner B J. Geometric Tomography[M]. Cambridge:Cambridge Univ Press,1995,
  • 7Lutwak E,Yang D,Zhang G. Lp, affine isoperimetrlc inequalities[J]. J Differential Geom,2000,56:111-132.
  • 8Petty C M. Centroid sarfaces Pacific[J]. J Math, 1961,11:1535 - 1547.
  • 9Lutwak E. Intersection bodies and dual mixed volumes[ J ]. Advances in Math, 1988,71:232 -261.
  • 10Petty C M. Isoperimetric problems Proe Conf. Convexty and Combinatorial Geometry( Univ Oklahoma, 1971 ) [M]. Oklahoma: University of Oklahoma, 1972:26-41.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部