期刊文献+

基于小波的非线性结构系统识别 被引量:10

System identification of a nonlinear structure based on wavelet trans for mation
下载PDF
导出
摘要 提出了一个基于小波变换的方法用于非线性结构系统识别。采用复Morlet小波,对非线性结构自由响应信号进行连续小波变换,根据小波系数模极大值的方法提取小波变换的脊线和小波骨架。提取的小波脊线和小波骨架被用来识别结构的瞬时频率和振幅,得到非线性结构的骨架曲线。为降低噪声的影响,采用一个基于奇异值分解(SVD)的方法对识别的结构进行处理。最后通过一个具有非线性刚度结构的数值模拟验证了该方法的有效性。 A method based on wavelet transformation for identifying a nonlinear structure system was presented.With it complex Morlet wavelet was adopted and continuous wavelet transformation on a free response signal of a nonlinear structure was performed.According to maximum value of modulus of wavelet coefficient,wavelet ridges and wavelet skeleton were extracted,which could be used to identify the instantaneous frequency and amplitude of the signal,then the skeleton curve of the nonlinear structure was obtained.In addition,a method based on singular value decomposition(SVD) was proceed to deal with the obtained result for dropping influence of noise.At last,the effectiveness of the proposed method was validated via numerical simulation of two structure models with nonlinear stiffness.
出处 《振动与冲击》 EI CSCD 北大核心 2009年第3期10-13,共4页 Journal of Vibration and Shock
基金 国家自然科学基金资助项目(50678173) 国家自然科学基金(青年基金)(50708113)
关键词 小波变换 非线性 瞬时频率 骨架曲线 奇异值分解(SVD) wavelet transformation nonlinear instantaneous frequency skeleton curve singular value decomposition(SVD)
  • 相关文献

参考文献12

  • 1Feldman M. Non-linear system vibration analysis Hilbert transform-Ⅰ. Free vibration analysis method ' Freevib' [ J ]. Mechanical systems and signal processing. 1994, 8 (2): 119-127.
  • 2Feldman M. Non-linear system vibration analysis Hilbert transform-Ⅱ. Forced vibration analysis method ‘Forcevib' [J]. Mechanical systems and signal processing. 1994, 8 (3) :309-318.
  • 3Feldman M. Identification of weakly nonlinearities in muhiple coupled oscillators [ J ]. Journal of sound and vibration, 2007, 303:357-370.
  • 4Shaw S W, Pierre C. Normal modes for non-linear vibratory systems [ J]. Journal of sound and vibration, 1993, 164 ( 1 ) :85-124.
  • 5黄天立,楼梦麟.基于HHT的非线性结构系统识别研究[J].地震工程与工程振动,2006,26(3):80-83. 被引量:19
  • 6Kerschen G, Vakakis A F, et al. Toward a fundamental understanding of the Hilbert-Huang transform in nonlinear structural dynamics [ A]. IMAC-ⅩⅩⅣ Conference & exposition on structural dynamics, St. Louis, Missouri, Jan. 30-Feb. 2,2006.
  • 7Frank Pai P. Nonlinear vibration characterization by signal decomposition [ J]. Journal of sound and vibration, 2007, 307 : 527-544.
  • 8Staszewski W J. Identification of non-linear systems using muh-scale ridges and skeletons of the wavelet transform [ J]. Journal of sound and vibration, 1998, 214(4) :639- 658.
  • 9Ta M N, Lardies J. Identification of weak nonlinearities on damping and stiffness by the continuous wavelet transform [ J]. Journal of sound and vibration, 2006, 293:16-37.
  • 10Delprat N , Escudie B , et al. Asymptotic wavelet and gabor analysis: extraction of instantaneous frequencies [J]. IEEE Trans on Information Theory, 1992, 38 (2) : 644-664.

二级参考文献5

  • 1Feldman M.Non-linear system vibration analysis using Hilbert transform-Ⅰ.Free vibration analysis method ‘ FREEVIB’[J].Mechanical Systems and Signal Processing,1994,8(2):119~127.
  • 2Huang,N E.,Shen,Z,Long,S R,et al.The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[J].Proc.R.Soc.Lond.A,1998,454:903~995.
  • 3Yang,J N,Lei Y,Pan S,Huang N.System identification of linear structures based on Hilbert Huang spectral analysis.Part 1:Normal modes[J].EESD,2003,32:1443~1467.
  • 4S W Shaw,C Pierre.Normal modes for nonlinear vibratory systems[J].Journal of Sound and Vibration,1993,164 (1):85~124.
  • 5陈隽,徐幼麟,李杰.Hilbert-Huang变换在密频结构阻尼识别中的应用[J].地震工程与工程振动,2003,23(4):34-42. 被引量:34

共引文献18

同被引文献106

引证文献10

二级引证文献51

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部