期刊文献+

次序二叉树支持向量机多类故障诊断算法研究 被引量:16

Multi-class fault diagnosis based on support vector machines with sequenced binary tree archtecture
下载PDF
导出
摘要 构建二叉树支持向量机时,如果随机地将分类器分布在二叉树的各个结点上,是不能充分发挥其性能的。考虑到样本的分布情况对分类器推广能力具有较大影响,提出一种次序二叉树支持向量机多类算法,采用样本分布半径和样本分布距离估算各个类别的样本在高维特征空间中的分布情况,把分布半径较大的类别或者分布距离较大的类别较早地分出来,并且在特征空间中给其划分较大的分类区域。转子多故障诊断实验表明,该算法的诊断速度快,故障识别率高,推广能力强,更加适合于实际故障诊断应用。 If classifiers of a support vector machine with binary tree architecture are arrayed randomly in the binary tree,their performance is not the best.A sequenced method in consideration of the sample range was proposed to rationally array classifiers of a support vector machine with binary tree architecture.A sample distribution radius and a sample distribution distance were introduced to estimate sample range of all classes in high-dimension characteristic space.The classes with bigger sample range were classified earlier in the higher nodal point of the binary tree architecture,and were given wider classificatory areas in the characteristic space.The experiment of multi-class fault diagnosis of a rotor showed that the proposed method distinctly improves the fault recognition accuracy,the diagnosis speed and the generalization,and it is suitable for practical application of multi-class fault diagnosis.
出处 《振动与冲击》 EI CSCD 北大核心 2009年第3期51-54,共4页 Journal of Vibration and Shock
基金 国家杰出青年科学基金(50425516) 教育部"跨世纪优秀人才培养计划"基金资助项目
关键词 故障诊断 支持向量机 支持向量机多类算法 二叉树 fault diagnosis support vector machines multi-class support vector machine binary tree
  • 相关文献

参考文献9

  • 1Widodo A, Yang B S. Application of nonlinear feature extraction and support vector machines for fault diagnosis of induction motors [ J ]. Expert Systems with Applicahions, 2007, 33 ( 1 ) : 241 - 250.
  • 2Ravikumar B, Thukaram D, Khincha H P. Application of support vector machines for fault diagnosis in power transmission system[ J]. Iet Generation Transmission & Distribution, 2008, 2(1):119-130.
  • 3Abbasion S, Rafsanjani A, Farshidianfar A, et al. Rolling element bearings multi-fauh classification based on the wavelet denoising and support vector machine[ J ]. Mechanical Systems and Signal Processing, 2007, 21 (7) :2933 - 2945.
  • 4Acevedo F J, Maldonado S, Dominguez E, et al. Probabilistic support vector machines for multi-class alcohol identification [J]. Sensors and Sctuatiors B-Chemical, 2007, 122( 1 ) :227 - 235.
  • 5Sungmoon C,Sang H O, Soo-Young L. Suppor vector machines with binary tree architecture for multi-class classification [ J ]. Neural Information Processing-Letters and Reviews, 2004,2 (3):47-51.
  • 6马笑潇,黄席樾,柴毅.基于SVM的二叉树多类分类算法及其在故障诊断中的应用[J].控制与决策,2003,18(3):272-276. 被引量:78
  • 7Fumitake Takahashi, Shigego Abe. Decision-tree-based multiclass support vector machines, From: Http://frenchblue. scitec, kobe-u. ac. jp/abe/pdf/iconip 02 - takashi.pdf,2002.
  • 8Vapnik V N. The nature of statistical learning theory. New York:Springer-Verlag,1999.
  • 9Vapnik V N 张学工.统计学习理论的本质[M].北京:清华大学出版社,2000..

二级参考文献3

共引文献249

同被引文献159

引证文献16

二级引证文献109

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部