期刊文献+

四轮激励含相位差的汽车高维非线性超混沌动力学特性研究 被引量:4

Hyper chaotic behavior of a vehicle with multi-dimension and 4-wheel excitation containing phase difference
下载PDF
导出
摘要 分析了四轮激励具有时间延迟的汽车14维非自治动力学系统,在前后轮激励相位差作为分岔参数的前提下对其进行了全局分岔特性分析,频谱分析,通过Poincare映射得到其超混沌吸引子;具体计算了特定参数条件下高维自治系统的各维李亚谱诺夫指数及特定区间的李亚谱诺夫指数谱,通过对李亚谱诺夫指数的定量研究确定非线性系统的超混沌特性;数值研究表明:在分岔参数的特定区间系统存在混沌、超混沌运动;同时分岔图也具体指明了非线性系统的失稳区间;分析结果对不同路面汽车的动力学设计及其混沌动力学控制具有一定的理论指导意义。 Hyper chaotic behavior of a vehicle model with idiographic 14-dimension was presented here.Global bifurcation analysis,spectral analysis and Poincare maps are used simultaneously in the study.Strange hyper chaotic attractors of each dimension were obtained.Lyapunov exponent charts calculated revealed the hyper chaotics characteristics and unstable range of the nonlinear system.Numerical simulations indicate a that in the special range of the bifurcation parameter there exist chaos,hyper chaos,and so on;in the bifurcation diagram,there exist converse motions from periodic to chaotic vibration.The proposed analysis method is significant to vehicle dynamic design and dynamic control under conditions of different road surface.
出处 《振动与冲击》 EI CSCD 北大核心 2009年第3期102-104,115,共4页 Journal of Vibration and Shock
基金 高等学校学科创新引智计划(B07018)资助
关键词 汽车非线性动力学 全局分岔 POINCARE映射 超混沌特性 李亚谱诺夫指数 vehicle nonlinear dynamics global bifurcation hyper chaotic movement lyapunov exponent Poincare map
  • 相关文献

参考文献7

  • 1Williams R A. Automotive active suspensions, part 1: Basic principles[ J]. Journal of Automobile Engineering, 1997, part D 211,415 -426.
  • 2Campos J, Davis L, Lewis F L, et al. Active suspension control of ground vehicle heave and pitch motion. In : proceedings of the 7^th IEEE Mediterranean Control Conference on Control and Automation, Haifa, Israel, 1999.
  • 3Choi S B, Lee S K. A hysteresis model for the field-dependent damping force of a magnetorheological damper [ J ]. J Sound Vib 2001,245, 83 - 375.
  • 4Lai C Y, Lia W H. Vibration control of a suspension system via magnetorheological fluid damper[J]. J Vib Control 2002, 8:47 - 527.
  • 5Litak G, et al. Chaotic cibration of a quarter-car model excited by the road surface profile, Commun Nonlinear Sci Numer Simul (2007) , doi : 10. 1016/j, cnsns. 2007.01. 003.
  • 6Moran A, Nagai M. Optimal active control of nonlinear vehicle suspension using neural networks. JSME International Journal, 1994,Series C 37, 707 - 718.
  • 7Zhang J G, et al. Hopf bifurcations, Lyapunov exponents and control of chaos for a class of centrifugal fly wheel governor system, Chaos, Solitons & Fractals (2007), doi: 10. 1016/j. chaos. 2007.06. 131.

同被引文献34

引证文献4

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部