期刊文献+

超高性能混凝土梁正截面承载力 被引量:29

Normal Section Bearing Capacity of Ultra High Performance Concrete Beam
下载PDF
导出
摘要 对超高性能混凝土(UHPC)的单轴受压应力—应变全曲线和UHPC梁的受力性能进行试验研究及理论分析。试验结果表明:UHPC具有良好的受压变形性能,其应力峰值点应变达0.003 5,极限应变可达0.0045;UHPC梁具有良好的受拉变形能力及裂缝分布,其极限变形达梁跨径的1/30.1-1/71.8,梁体的混凝土应变基本符合平截面假定。基于UHPC的初裂抗拉强度得到的UHPC梁截面塑性影响系数为1.53,并据此建立UHPC受弯构件的开裂弯矩计算公式和极限承载能力计算公式,预测UHPC梁的破坏模式、开裂弯矩以及极限弯矩。计算结果具有较高的精度。 The experimental investigation and theoretical analyses were carried through on the uniaxial compressive stress-strain complete curve of Ultra High Performance Concrete (UHPC) and the mechanical behavior of the prestressed UHPC beams. Results show that the UHPC has good compressive deformation performance. The strain at the peak stress of UHPC UHPC beams have good tensile deformation capacity is about 0. 003 5 and the ultimate strain is 0. 004 5. and crack distribution. The ultimate deformation of UHPC beams is 1/30.1-1/71.8 of the beam span, and the concrete strain distribution of the beam body basically accords with the plane section assumption. The plastic influence coefficient of UHPC beam section is 1.53, which is obtained based on the tensile strength of the initial cracking. Accordingly, formulae for calculating the cracking moment of UHPC flexural member and the ultimate bearing capacity are established to predict the failure mode, the cracking moment and the ultimate moment of UHPC beams. The computed values are of high precision.
作者 杨剑 方志
出处 《中国铁道科学》 EI CAS CSCD 北大核心 2009年第2期23-30,共8页 China Railway Science
基金 国家自然科学基金资助项目(50478502)
关键词 超高性能混凝土 混凝土梁 正截面承载力 应力—应变曲线 Ultra High Performance Concrete (UHPC) Concrete beam Normal section bearing capacity Stress-strain curve
  • 相关文献

参考文献7

  • 1RICHARD P, CHEYREZY M. Composition of Reactive Powder Concretes [J]. Cement and Concrete Research. 1995, 25 (7): 1501-1511.
  • 2ACKER P, BEHLOUL M. Ductal Technology: A Large Spectrum of Properties, A Wide Range of Application[C] //Proceedings of the International Symposium on Ultra High Performance Concrete. Germany. 2004: 11-23.
  • 3余自若,安明喆,阎贵平.活性粉末混凝土的疲劳性能试验研究[J].中国铁道科学,2008,29(4):35-40. 被引量:23
  • 4吴炎海,何雁斌.活性粉末混凝土(RPC200)的配制试验研究[J].中国公路学报,2003,16(4):44-49. 被引量:76
  • 5GRAYBEAL A B. Characterization of the Behavior of Ultra-High Performance Concrete [D]. Maryland: University of Maryland, 2005.
  • 6SENG L T, SONG Peijin. Flexural Behavior of Steel Fiber Reinforced Concrete. Journal of Materials in Civil Engineering[J].ASCE, 1998, 10 (2): 86-97.
  • 7American Concrete Institute. ACI 318-02 Building Code Requirements for Structural Concrete and Commentary [S]. Michigan: ACI Committee 318, 2002.

二级参考文献9

  • 1季文玉,周超民.预应力RPC箱梁剪力滞效应分析[J].中国铁道科学,2007,28(1):19-22. 被引量:15
  • 2PIERRE RICHARD,MARCEL CHEYREZY. Composition of reactive powder concretes [J]. Cement and Concrete Research,1995,25(7):1 501--1 511.
  • 3中华人民共和国建设部 国家质量监督检验检疫总局.GB50010-2002混凝土结构设计规范[S].北京:中国建筑工业出版社,2002.17.
  • 4高镇同.疲劳应用统计学[M].北京:国防工业出版社,1986..
  • 5Richard P, Cheyrezy M. Composition of Reactive Powder Concrete Research [J]. Cement and Concrete Research, 1995, 25 (7): 1501-1511.
  • 6Paulo B C, Joaquim A F, Paulo A A. Fatigue Behavior of Fiber-Reinforced Concrete in Compression [J]. Cement and Concrete Composites, 2002, 24 : 211-217.
  • 7Waley C P, Neville A M. Non-Elastic Deformation of Concrete under Cyclic Compression [J]. Magazine of Concrete Research, 1973, 25 (84): 145-154.
  • 8JU Yang, XIE Heping. Application of Damage Definition Based on Hypothesis of Strain Equivalence [J]. Journal of Coal Science & Engineering (China). 2000, 6 (2): 9-14.
  • 9何雁斌,吴炎海,杨幼华,陈尚鸿,李轶慧.活性粉末混凝土(RPC200)的材料选用及制作技术[J].福建建筑,2003(1):70-72. 被引量:25

共引文献96

同被引文献285

引证文献29

二级引证文献146

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部