期刊文献+

具有对称或反对称滤波器组的双正交平衡多小波 被引量:2

Balanced biorthonormal multiwavelet with symmetric or antisymmetric filter banks
下载PDF
导出
摘要 通过对待定矩阵滤波器组的定义,构造了具有对称性,平衡性和高阶消失矩的双正交多小波.它的滤波器组具有有利于实际应用的对称性,其结构类似于标量小波,即可以用两支滤波器确定,所构造的多小波无疑是一类新型的多小波. A class of the balanced biorthonormal multiwavelets was constructed by defining a specific matrix filter structure, in which the multifitter banks of multiwavelets have had the desired symmetry. Here, the multifilter banks have possessed symmetric or anti-symmetric, which resembled filters of scalar wavelet in favor of application, so they have formed a type of biorthonormal multiwavclet undoubtedly.
出处 《湖南文理学院学报(自然科学版)》 CAS 2009年第1期14-16,共3页 Journal of Hunan University of Arts and Science(Science and Technology)
基金 湖南文理学院优秀青年资助项目(QNYX0813)
关键词 多小波 正交性 对称性 图像压缩 multiwavelet orthogonality symmetric image compression
  • 相关文献

参考文献9

  • 1A.Cohen,I.Daubechies,J.C.Feauveau.Biorthogonal bases of compactly supported wavclets[J].Comm.on Pure and Applied Mathematics,1992,45:485-560.
  • 2T.N.Goodman,S.L.Lee,W.S.Tang.Wavelets in wandering subspace[J].Trans.Amer.Math.Soc.,1993,1:639-654.
  • 3C.Chui,J.A.Lian.Construction of compactly supported symmetric and anti symmetric Orthogonal wavelets with scale=3[J].Applied comput.Harmon.Anal.,1995,2:68-84.
  • 4L.Z.Peng,Y.G Wang.The parameterization and algebraic sffucturc of 3-bank wavelets system[J].Science in China(Series A),2001,31:602-614.
  • 5B.Han.symmetric Orthogonal scaling functions and wavelets with dilation factor 4[J].Adv.Comput.Math.,1998 8:221-247.
  • 6Q.T.Jang.On the design of multifilter banks and orthonormal multiwavelet bases[J].IEEE Tram.on Signal Processing,1998,46:3292-3303.
  • 7C.Chui,J.A.Lian.Construction of compactly supported symmetric and anti symmetric Orthogonal wavelets with scale=3[J].Applied comput.Harmon.Anal.,1995,2:68-84.
  • 8J.Lebrun,M.Vcttcrli.High-order balanced multiwavelets:theory,factization,and disign[J].IEEE Trans.on signal Processing,2001,49:1918-1930.
  • 9G Q.Wang.Four-bank compactly supported bi-symmetric orthonormal wavelets bases[J].Optical Engineering,2004,43(10):2362-2368.

同被引文献11

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部