期刊文献+

支持向量回归方法在图像压缩中的应用

Application of support vector regression method in image compression
下载PDF
导出
摘要 在把图像划分为若干个子块的基础上,以广义欧氏距离为评判标准对图像子块进行分类,然后采用支持向量回归方法建立各类型图像子块的模型,得到对应各类型图像子块的支持向量回归模型参数的集合,从而仅用图像子块编号及其类型号和相应的支持向量回归模型参数来描述整个图像,达到图像压缩的目的。实验表明,该方法压缩比高、误码率低、信噪比高、图像恢复质量良好。此外,该方法可以通过改变图像分块的大小或阈值调整压缩比,还可通过改变支持向量回归模型的逼近误差控制图像的恢复质量。 A novel image compression method based on Support Vector Regression(SVR) method is proposed in this paper.On the basis of dividing the image into some sub-blocks,the general Euclid distance is employed to classify these sub-blocks.Then the SVR is employed to establish the model of each class of image sub-block in order to obtain the SVR model's parameters sets of each class.Thus an image can be described by the sub-block class number,position feature of each block in an image and a group parameters of SVR model.The results of experiment show that this method has high compression ratio,high signal-to-noise ratio and fine resuming effect on subject.Additionally,the compression ratio of this method can be adjusted by changing the dimension of block or threshold.The resuming effect on image can be adjusted by changing the approaching error while establishing the SVR model.
作者 李芳
出处 《计算机工程与应用》 CSCD 北大核心 2009年第10期165-167,共3页 Computer Engineering and Applications
基金 广东省自然科学基金No.05300121~~
关键词 图像压缩 模型 支持向量回归 广义欧氏距离 image compression model support vector machine general Euclid distance
  • 相关文献

参考文献7

  • 1Nichols J,Bapty T.Autonomic image sequence processing[J].Integrated Computer-Aided Engineering, 2006,13( 1 ) : 23--40.
  • 2Jiang J,Guo B F,Ipson S.Shape-based image retrieval for JPEG- 2000 compressed image databases[J].Muhimedia Tools and Applications, 2005,29(3 ) : 93-108.
  • 3胡寿松,何亚群.粗糙决策理论与应用[M].北京:北京航空航天大学出版社,2005:9—10.
  • 4Gordan M,Georgakis A,Tsato O.Computational complexity reduction of the support vector machine classifiers for image analysis tasks through the use of the discrete cosine transform[C]//2006 IEEE-TITC International Conference on Automation,Quality and Testing, Robotics, May 2006: 246-249.
  • 5Shavers C,Li R,Lebby G.An SVM-based approach to face detection[C]//Proceedings of the 38th Southeastern Symposium on System Theory, March 2005 : 362-366.
  • 6Wei Xun-kai,Li Ying-hong,Cheng Wang.A novel identification model of aeroengine based on support vector machine[C]//Proceedings of the 5th World Congress on Intelligent Control and Au tomation, 2004: 415-419.
  • 7Robinson J,Kecman V.Combining support vector machine learning with the discrete cosine transform in image compress[J].IEEE Transaction on Neural Networks,2003,14(4):950-958.

共引文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部