期刊文献+

圈关联对策染色的研究

Research on the Incidence Game Chromatic Number of Cycles
下载PDF
导出
摘要 Stephan提出了图关联对策染色的概念:设G是一个有限图,两个人Alice和Bob轮流对图G的关联进行染色,使得相邻的关联染色不同,Alice首先开始染色,若无法再进行下去时染色结束.若染色结束后图G的每个关联都正常染色,则Alice获胜,否则Bob获胜.本文讨论了圈关联对策染色,并确定了圈关联对策色数. The definition of incidence game chromatic number of graph was proposed by Stephan. Let G be a finite graph. Two players, Alice and Bob, color alternately the incidences of graph in such a way that the neighborly incidences receive distinct colors. The game ends when this is not possible any more. Alice wins if every incidence is colored at the end of the game, otherwise Bob wins. In this paper, we discuss the indidence game coloring of cycle, and determine the incidence game chromatic number of cycle.
出处 《延边大学学报(自然科学版)》 CAS 2009年第1期5-8,共4页 Journal of Yanbian University(Natural Science Edition)
基金 国家自然科学基金资助项目(60503002 30670540)
关键词 染色 对策染色 关联染色 关联对策染色 graph coloring game coloring incidence coloring incidence game coloring
  • 相关文献

参考文献5

  • 1Bondy J A,Murty U S R.Graph Theory with Applications[M].New York:Mscmillan Press,1976.
  • 2Bodlaender H L.Lexity of Some Color,on the Comping Games[J].Int J Found Comput Sci,1991,2:133-147.
  • 3Brualdi R A,Quinn Massey J J.Incidence and Strong Edge Colorings of Graphs[J].Discrete Math,1993,122:51-58.
  • 4Stephan D A.The Incidence Game Chromatic Number[J].Electronic Notes in Discrete Math,2006,27:1-2.
  • 5Zhu X.The Game Coloring Number of Planar Graph[J].J Combinatorial Theory(B),1999,75:245-258.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部