期刊文献+

一种基于特征值分解的数据挖掘隐私保护扰乱增强方法 被引量:1

An SVD-Based Advanced Data Perturbation Method for Privacy-Preserving Data Mining
下载PDF
导出
摘要 针对数据扰乱技术中的特征值分解攻击方法,分析和评估了该攻击下数据扰乱模型的安全性,发现现有模型存在一定的脆弱性.设计了基于特征空间的扰乱强度量化方法,对隐私保护强度进行量化评估.在此基础上,通过阀值曲线的上限投影,提出了针对数据分离攻击的隐私保护的增强方法.结果表明,在盲数据源下,该增强方法对于抵抗特征值分解攻击具有有效性和鲁棒性. Analysis and evaluations on the security of general data perturbation method through SVD (Singular Vector Decomposition) based attacks shows its vulnerability. An evaluation method was raised for quantifying the strength of data perturbation, and an enhanced method was presented based on eigen space to prevent against SVD-based attacks. The experiments show the availability and robustness of the model with unknown data source under SVD attacks.
出处 《上海交通大学学报》 EI CAS CSCD 北大核心 2009年第3期427-431,共5页 Journal of Shanghai Jiaotong University
基金 国家自然科学基金资助项目(60772098) 教育部新世纪优秀人才支持计划项目(NCET-06-0393)
关键词 数据挖掘 隐私保护 特征值分解 data mining privacy preserving eigenvalue decomposition
  • 相关文献

参考文献6

  • 1W3, P3P 1.0 recommended version(2002)[S].
  • 2IBM. EPAL 1. 1[EB/OL]. [2003-06]. http://www. zurich.ibm. com/seeurity/enterprise-privacy/epal/.
  • 3Agrawal R, Srikant R. Privacy-preserving data mining [C]// Proceedings of the ACM SIGMOD Conference on Management of Data. New York: ACM, 2000.
  • 4Rizvi S J, Haritsa J R. Maintaining data privacy in association rule mining [C]// Proceedings of 28th International Conference on Very Large Data Bases. Hong Kong: VLDB, 2002.
  • 5Evfimievski A. Privacy preserving mining of association rules [C]//Proceedings of the 8th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Edmonton:ACM, 2002.
  • 6Agrawal R. IBM synthetic data generator [EB/OL]. http://www. almaden. ibm. com/cs/projects/iis/hdb/ Projects/data_mining/mining. shtml.

同被引文献17

  • 1秦静,张振峰,冯登国,李宝.一个特殊的安全双方计算协议[J].通信学报,2004,25(11):35-42. 被引量:10
  • 2张鹏,唐世渭.朴素贝叶斯分类中的隐私保护方法研究[J].计算机学报,2007,30(8):1267-1276. 被引量:19
  • 3Rizvi S J,Haritsa J R.Maintaining Data Privacy in Association Rule Mining // Proc of the 28th International Conference on Very Large Databases.Hongkong,China,2002:682-693.
  • 4Agrawal R,Srikant R.Privacy-Preserving Data Mining.ACM SIGMOD Record,2000,29(2):439-450.
  • 5Vaidya J,Clifton C.Privacy-Preserving K-Means Clustering over Vertically Partitioned Data // Proc of the 9th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.Washington,USA,2003:206-215.
  • 6Chaudhuri K,Mishra N.When Random Sampling Preserves Privacy // Proc of the 26th Annual International Cryptology Conference.Santa Barbara,USA,2006:198-213.
  • 7Pinkas B.Cryptographic Techniques for Privacy-Preserving Data Mining.ACM SIGKDD Explorations Newsletter,2002,4(2):12-19.
  • 8Cliffton C,Kantarcioglu M,Vaidya J,et al.Tools for Privacy Preserving Distributed Data Mining.ACM SIGKDD Explorations Newsletter,2004,4(2):28-34.
  • 9Zhan J.Using Cryptography for Privacy Protection in Data Mining Systems // Proc of the 1st WICI International Workshop on Web Intelligence Meets Brain Informatics.Beijing,China,2007:494-513.
  • 10Kantarcioglous M,Clifton C.Privacy Preserving Distributed Mining of Association Rules on Horizontally Partitioned Data.IEEE Trans on Knowledge and Data Engineering,2004,16(9):1026-1037.

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部