期刊文献+

一种改进的红外多目标跟踪算法 被引量:5

An Improved Algorithm for Multiple Infrared Targets Tracking
下载PDF
导出
摘要 为了实现对多个特性相似的红外目标进行精确跟踪,在均值场蒙特卡罗(MFMC)算法基础上,提出了一种改进的基于粒子滤波的红外多目标跟踪算法.对MFMC算法的粒子采样部分融合了Mean-Shift,在粒子权值计算之前用Mean-Shift将其迭代至候选目标相似度最大位置,增加了粒子的有效性;在MFMC算法信息评估机制中加入了目标大小因素,提高了机制的自适应性.实验结果表明,该改进的跟踪算法比原算法具有更好的鲁棒性和精确性,实时性得到了很大提高,能够有效解决多个红外目标的跟踪问题. Based on the mean field Monte Carlo(MFMC) algorithm, an improved one for multiple infrared targets tracking on basis of particle filter was proposed. In this new algorithm, Mean-Shift is integrated in the sampling of particles in MFMC, so before the weighting of particles, Mean-Shift will move them to the place where reaches maximum similarity and then the effectiveness of particles is greatly improved. This algorithm also revises the mechanism for message assessment in MFMC with the consideration of the sizes of targets, and it improves the self-adaptability of the mechanism. The experimental results show that this new algorithm is more robust, accurate and efficient than MFMC. It can effectively solve the issue of multiple infrared targets tracking.
出处 《上海交通大学学报》 EI CAS CSCD 北大核心 2009年第3期437-442,共6页 Journal of Shanghai Jiaotong University
基金 国家自然科学基金资助项目(60675023) 国家高技术研究发展计划(863)项目(2007AA01Z164)
关键词 多目标跟踪 红外目标 均值场蒙特卡罗 粒子滤波 multiple targets tracking infrared target mean field Monte Carlo particle filter
  • 相关文献

参考文献8

  • 1Rasmussen C, Hager G. Probabilistic data association methods for tracking complex visual objects[J]. IEEE Trans PAMI, 2001.23(6) :560-576.
  • 2Blackman S S. Multiple hypothesis tracking for multipie target tracking[J]. IEEE Aerospace and Electronic Systems Magazine, 2004, 19(1) :5-18.
  • 3Bar-Shalom Y, Fortmann T. Tracking and data association[M]. New York:Academic Press, 1988.
  • 4Yu T, Wu Y. Collaborative Tracking of Multiple Targets[C]// Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Washington, DC: IEEE Press, 2004.1:834-841.
  • 5Yu T, Wu Y. Decentralized Multiple Target Tracking using Netted Collaborative Autonomous Trackers [C]// Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. San Diego, CA: IEEE Press, 2005.1:939-946.
  • 6Comaniciu D, Mean Shift: A robust approach toward feature space analysis[J]. IEEE Trans PAMI, 2002, 24(5) : 603-619.
  • 7Comaniciu D, Ramesh V, Meer P. Real-time tracking of non-rigid objects using mean shift[C]// Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Hilton Head Island, South Carolina: IEEE Press, 2000.2: 142-149.
  • 8Gordon N J, Salmond D J, Smith A F M. Novel approach to nonlinear/non-Gaussian Bayesian state estimation [J]. IEE Proceedings-F, 1993, 140(2): 107- 113.

同被引文献23

引证文献5

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部