摘要
为了进一步提高目标跟踪的性能,采用一种新的建议分布构造方法,即利用状态分割技术和平行扩展卡尔曼滤波技术构造建议分布.依据该方法构造的建议分布相对传统的方法提高了粒子滤波估计的准确性.同时,在新的跟踪算法框架中,将颜色模型和形状模型自适应地融合,并结合了一种新的模型更新方法.实验结果证明,该跟踪算法具有较强的适应性和有效性.
To improve the performance of object tracking, a particle filter algorithm was proposed which uses state partition technique and parallel extended kalman filter to construct proposal distribution. This proposal enhances the estimation accuracy compared to traditional filters. At the same time, color model and shape model are adaptively fused in the framework, a new model update scheme is also combined. The experimental results show the availability of the proposed algorithm.
出处
《上海交通大学学报》
EI
CAS
CSCD
北大核心
2009年第3期485-489,共5页
Journal of Shanghai Jiaotong University
基金
国家自然科学基金资助项目(60675015)
关键词
目标跟踪
粒子滤波
状态分割
平行扩展卡尔曼滤波
自适应融合
object tracking
particle filter
state partition
parallel extended Kalman filter
adaptively fusing