期刊文献+

一种新的粒子滤波目标跟踪算法 被引量:12

A New Particle Filter Object Tracking Algorithm
下载PDF
导出
摘要 为了进一步提高目标跟踪的性能,采用一种新的建议分布构造方法,即利用状态分割技术和平行扩展卡尔曼滤波技术构造建议分布.依据该方法构造的建议分布相对传统的方法提高了粒子滤波估计的准确性.同时,在新的跟踪算法框架中,将颜色模型和形状模型自适应地融合,并结合了一种新的模型更新方法.实验结果证明,该跟踪算法具有较强的适应性和有效性. To improve the performance of object tracking, a particle filter algorithm was proposed which uses state partition technique and parallel extended kalman filter to construct proposal distribution. This proposal enhances the estimation accuracy compared to traditional filters. At the same time, color model and shape model are adaptively fused in the framework, a new model update scheme is also combined. The experimental results show the availability of the proposed algorithm.
出处 《上海交通大学学报》 EI CAS CSCD 北大核心 2009年第3期485-489,共5页 Journal of Shanghai Jiaotong University
基金 国家自然科学基金资助项目(60675015)
关键词 目标跟踪 粒子滤波 状态分割 平行扩展卡尔曼滤波 自适应融合 object tracking particle filter state partition parallel extended Kalman filter adaptively fusing
  • 相关文献

参考文献15

  • 1Arulampalam M, Maskell S, Gordon N, et al. A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking [J]. IEEE Transactions on Signal Process, 2002, 50(2) :174-188.
  • 2Doucet A, Godsill S, Andrieu C. On sequential Monte Carlo sampling methods for Bayesian filtering [J]. Statist Computer, 2000, 10: 197-208.
  • 3Gordon N J, Salmond D J, Ewing C. Bayesian state estimation for tracking and guidance using the bootstrap filter [J]. Journal of Guidance, Control and Dynamics, 1995,18(6): 1434-1443.
  • 4Zhai Y, Yeary M. A novel nonlinear state estimation technique based on sequential importance sampling and parallel filter banks [C]//Proeeedings of the 2005 IEEE International Conference on Control Applications. Piscataway NJ: IEEE Press, 2005: 1601- 1611.
  • 5Lainiotis D, Papaparaskeva P. A new class of efficient adaptive nonlinear filters (ANLF) [J]. IEEE Transactions on Signal Processing, 1998, 46 (6) : 1730- 1737.
  • 6Lainiotis D, Papaparaskeva P. Efficient algorithms of clustering adaptive nonlinear filters [J]. IEEE Transactions on Automatic Control, 1999, 44 (7): 1454- 1459.
  • 7Comaniciu D, Ramesh V, Meer P. Real-time tracking of non-rigid objects using mean shift [C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Washington DC: IEEE Computer Society, 2000, 2 : 142-149.
  • 8Birchfield S. Elliptical head tracking using mtensity gradients and color histograms [C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Washington DC: IEEE Computer Society, 1998: 232-237.
  • 9AherneF, Thacker N, Rockett P. The Bhattacharyya metric as an absolute similarity measure for frequency coded data [J]. Kybernetika, 1998, 34(4) : 363-368.
  • 10Wu Y, Huang T S. Robust visual tracking by integrating multiple cues based on co-inference learning [J]. International Journal of Computer Vision, 2004, 58(1) :55-71.

同被引文献77

引证文献12

二级引证文献45

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部