期刊文献+

碎片云动量特性数值仿真研究 被引量:7

Models for Momentum of Debris Cloud and Ejecta Produced by Hypervelocity Impacts of Aluminum Spheres with Thin Aluminum Sheets
下载PDF
导出
摘要 铝合金球形弹丸高速撞击薄铝板时,会造成薄铝板穿孔并自身发生破碎,在铝板前后两侧产生碎片云,分别为反溅碎片云和穿透碎片云。反溅碎片云及穿透碎片云具有各自的动量特性,对其动量特性的研究有助于为碎片云理论建模提供依据。采用AUTODYNV6.0软件对直径为6.35mm的Al1100-O球形弹丸高速正撞击6种厚度的Al6061-T6薄板进行了数值仿真计算,撞击速度为1.0~5.0km/s。得到上述两种碎片云的动量,确定了动量值随撞击速度口及薄板厚度艿的变化规律。同时,利用仿真得到的动量数据,采用多元回归方法,分别建立了两种碎片云动量模型。最后,对美国国家航空航天局(NASA)报告给出的7种工况下的撞击实验进行了数值仿真计算,并将动量值与实验结果进行了比较,得到的比较结果可用以分析数值仿真的有效性。 Debris clouds produced by the normal impact of an aluminum alloy sphere with an aluminum alloy sheet can scatter flying downrange,as well as an ejecta veil is produced at the same time. The momentum of debris clouds and ejecta are necessary to create the debris clouds and ejecta theoretical models. 54 numerical simulations were performed using the SPH(smoothed particle hydrodynamics) tech- nique in AUTODYN-2D,in which 6.35 mm diameter of 1100-O aluminum spheres impacted six thicknesses of 6061-T6 aluminum sheets at velocities ranging from 1.0 km/s to 5.0 km/s. Using the data from the numerical simulations,two respective regression models are developed for characterizing the momentum of debris clouds and ejecta produced by impacts with 1.0km/s≤v ≤5.0 kin/s,0. 5 mm≤δ 43.0 mm. In the two models, the independent variables are the impact velocity, v, and the thickness of the sphere,t, while the dependent variables are the momentum ratios (ratios of debris clouds momentum and ejecta momentum to sphere momentum). The effects of v and δ on the momentum of debris clouds and ejecta are investigated. Seven additional numerical simulations in the same way as above were carried out and values obtained are compared with the experimental data of NASA to evaluate the performance of the simulation.
出处 《高压物理学报》 EI CAS CSCD 北大核心 2009年第1期59-64,共6页 Chinese Journal of High Pressure Physics
关键词 动量 碎片云 超高速撞击 数值仿真 空间碎片 破碎 momentum debris clouds hypervelocity impact numerical simulation space debris fragmentation
  • 相关文献

参考文献14

  • 1张伟,庞宝君,邹经湘,张泽华.航天器微流星和空间碎片的防护方案[J].哈尔滨工业大学学报,1999,31(2):18-22. 被引量:31
  • 2Bernhard P P,Christiansen E L, Hyde J,et al. Hypervelocity Impact Damage into Space Shuttle Surfaces [J]. Int J Impact Eng, 1995,17(1-3):57-68.
  • 3Christiansen E L. Enhanced Meteoroid and Orbital Debris Shielding [J]. Int J Impact Eng,1995,17(1-3) :217-228.
  • 4Piekutowski A J. Formation and Description of Debris Cloud Produced by Hypervelocity Impact[R]. USA:NASA Marshall Space Flight Center, 1996.
  • 5Schonberg W P, Ebrahim A R. Modeling Oblique Hypervelocity Impact Phenomena Using Elementary Shock Physics [J]. Int J Impact Eng,1999,23(1):823-834.
  • 6Schafer F K. An Engineering Fragmentation Model for the Impact of Spherical Projectiles on Thin Metallic Plates[J].Int J Impact Eng,2006,33(1-12) :745-762.
  • 7Zee R. Physics of Debris Clouds from Hypervelocity Impacts[R]. USA: NASA Marshall Space Flight Center, 1993.
  • 8Hiermaier S,Konke D,Stilp A J, et al. Computational Simulation of the Hypervelocity Impact of Al-Sphere on Thin Plates of Different Materials [J].Int J Impact Eng, 1997,20 (1-5) : 363-374.
  • 9Hayhurst C J, Hiermaier S J,Clegg R A,et al. Development of Material Models for Nextel and Kevlar-Epoxy for High Pressure and Strain Rates[J].Int J Impact Eng,1999,23(1) :365-376.
  • 10Hayhurst C J ,Livingstone I H. Advanced Numerical Simulations for Hyperveloeity Impact[R]. USA : Century Dynamics Incorporated, 1998.

二级参考文献15

  • 1杨超,胡金彪.冲击载荷下钨在铁和镍中的扩散[J].兵器材料科学与工程,1997,20(2):20-23. 被引量:2
  • 2[2]宋明顺主编.测量不确定度评价与数据处理.中国计量出版社,2001
  • 3[3]刘锦萼等主编.概率论与数理统计.辽宁大学出版社,1994
  • 4Hart E W. On the Role of Dislocations in Bulk Diffusion [J]. Acta Met, 1957,5:597.
  • 5Ruoff A L. Enhance Diffusion during Plastic Deformation by Mechanical Diffusion [J]. J Appl Phys, 1967,38:3999.
  • 6Yano K, Horie Y. A Numerical Study of Shock-Induced Particle Velocity Dispersion in Solid Mixtures [J]. J Appl Phys, 1998,84 : 1292.
  • 7Horie Y,Sawaoka A B. Shock Compression Chemistry of Materials [M]. Tokyo:KTK Scientific Publishers, 1993.160.
  • 8Decker D L,Weiss J D,Vanfleet H B. Diffusion of Sn in Pb to 30 kbar [J]. Phys Rev B,1977,16:2392.
  • 9Tang Z P, Horie Y, Psakhie S G. Discrete Meso-Element Modeling of Shock Processes in Powders [A]. Davison Ⅰ.High-Pressure Shock Compression of Solids Ⅳ[C]. New York:Springer, 1997. 143-176.
  • 10Williamson R L. Parametric Studies of Dynamic Power Consolidation Using a Particle-Level Numerical Model [J].J Appl Phys,1990,68:1287.

共引文献59

同被引文献110

引证文献7

二级引证文献45

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部