期刊文献+

关于Cayley分解的一个注解

A note on Cayley factorization
下载PDF
导出
摘要 对于任意长度r≥3的齐次括号多项式,一定存在括号单项式,使之Cayley可分解的结论已被证明,然而却没有给出任何有关该单项式的性质,为此通过几个反例证明了这种括号单项式具有即使是次数最低的也不一定是唯一的性质. Sturmfels and Whiteley proved that for any homogeneous bracket polynomial of length r≥3,there must be a bracket monomial,which made the polynomial be Cayley factored after multiplied it,but they did not give any property of this monomial.In this text,it is proved that even the monomial of the least degree is not unique.
作者 沈亚良 杜娟
出处 《东北师大学报(自然科学版)》 CAS CSCD 北大核心 2009年第1期10-12,共3页 Journal of Northeast Normal University(Natural Science Edition)
基金 国家重点基础研究发展计划973项目(2004CB318001) 南通大学博士科研启动基金资助项目(08B03)
关键词 Cayley分解 括号多项式 拉直算法 射影几何 Cayley factorization bracket polynomial straightening algorithm projective geometry
  • 相关文献

参考文献10

  • 1WU W T. Mechanical theorem proving in geometries : basic principles[M]. New York:Springer, 1994:20-90.
  • 2CHOU S C. Mechanical geometry theorem proving[M]. Singapore:D Reidel Publishing Company, 1988:24-106.
  • 3KAPUR D. Using Grobner bases to reason about geometry[J]. J of Symbolic Computation,1986,2:399-408.
  • 4CHOU S C, GAO X SH, ZHANG J ZH. Machine proofs in geometry[M]. Singapore : World Scientific, 1994 : 56-77.
  • 5LI H B,WU Y H. Automated theorem proving in Projective geometry with Cayley and Bracket algebras I incidence geometry [J]. J of Symbolic Computation,2003,36(5) :717-762.
  • 6LI H B,WU Y H. Automated theorem proving in projective geometry with Cayley and Bracket algebras II conic geometry[J]. J of Symbolic Computtion,2003,36(5) :763-809.
  • 7WHITE N. Multilinear Cayley factorization[J]. J of Symbolic Computation, 1991,11 :421-438.
  • 8STURMFELS B,WHITELEY W. On the synthetic factorization of projectively invariant polynomials[J]. J of Symbolic Computation, 1991,11:439 453.
  • 9STURMFELS B. Algorithms in invariant theory[ M]. New York : Springer, 1993 :96-118.
  • 10MCMILLAN T, WHITE N. The dotted straightening algorithems[J]. J of Symbolic Computation, 1991,11 : 47-482.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部