期刊文献+

基于被动力学的昆虫运动动力学建模与分析 被引量:3

Modeling and Dynamic Analyses of Insect Locomotion Based on Passive Dynamics
下载PDF
导出
摘要 在John Schmitt和Philip Holmes等人工作的基础上,基于被动力学建立了一个考虑阻尼效应的昆虫LLS (lateral leg-spring)爬行模型。通过在Matlab环境下对模型进行数值仿真,发现引入阻尼后的模型更加符合实际情况,并表现出较好的稳定性。证明在施加的控制作用十分有限的情况下,昆虫本身身体结构及其爬行姿态在维持运动的稳定性方面发挥着重要作用,事实上这样的控制策略具有重要的生物学意义,通过被动力学的机械反馈,生物体可以在有限的神经控制作用下保持稳定运动,从而在受到地面扰动时及时做出反馈,并提高能效性。同时,我们考虑了引入偏摆角扰动时系统的响应,发现相对于其他变量扰动,偏摆角可以有效地改变模型的前进方向,并具有较好的鲁棒性,提出了可能的方向控制策略。 A horizontal LLS (lateral leg-spring) locomotion model of insect concerning damp effect was built on the basic work of John Schmitt and Philip Holmes. Via the simulation conducted in Matlab environment, the result shows that the model with damp accords with reality, and exhibits a robust stability. In the case of limit control affection, the configuration and posture of the insects play an important role in achieving and maintaining a stable rapid running, which means an important sense of biology efficiency. In the case of limited neural control,a stable motion could be achieved primary by passive mechanical feedback. The response to the yaw disturbance was considered. Through the simulation though the induced variation of yaw is relatively small with respect to other configurations, it exerts effective influence on the direction control of the running model. A plausible running direction control strategy was proposed.
出处 《力学季刊》 CSCD 北大核心 2009年第1期39-43,共5页 Chinese Quarterly of Mechanics
基金 国家自然科学基金资助项目(10672057 10872068)
关键词 运动认知 控制规则 LLS模型 爬行步态 预反射 motion cognition control algorithm LLS model locomotion preflex
  • 相关文献

参考文献7

  • 1Brown I E, Loeb G E. "preflexes"-programmable, high-gain, zero-delay intrinsic responses of perturbed musculoskeletal systerms[J]. Soc Neurosci Abstr, 1995,21:562.9.
  • 2John Schmitt, Philip Holmes. Mechanical models for insect locomotion:Dynamics and stability in the horizontal plane Ⅰ[J]. Theory Bio Cybern,2000,83:501 - 515.
  • 3Ting L H, Blickhan R, Full R J. Dynamic and static stability in hexapedal runners[J]. J Exp Bioi,1994,197:251 - 269.
  • 4Ruina A. Non-holonomic stability aspects of piecewise holonomic systerms[J]. Rep Math Phys, 1998,42(1/2):91 - 100.
  • 5Schmitt J, Holmes P. Mechanical models for insect locomotion: stability and parameter studies[J]. Physica D, 2001,156 (1 2):139 - 168.
  • 6Schmitt J, Garcia M, Razo R C, Holmes P, Full R J. Dynamics and stability of legged locomotion in the horizontal plane: a testing case using insects[J]. Biol Cybern, 2002,86 : 343 - 353.
  • 7王如彬,张志康,沈恩华.大脑皮层内神经元集团的能量演变[J].动力学与控制学报,2008,6(1):55-60. 被引量:10

二级参考文献10

  • 1[2]Wang Rubin,Zhikang Zhang.Mechanism on Brain Information Processing:Energy Coding.Applied Physical Letters,2006,89:123903
  • 2[3]Wang Rubin.A New Mechanism on Brain Information Processing-Energy Coding.The 13th International Conference on Neural Information Processing ICONIP 2006,Hong Kong.2006:306~313
  • 3[4]Wang Rubin,Zhang Zhikang.Energy coding in biological neural network.Cognitive Neurodynamics.2007,1(3):203~212
  • 4[5]Levy WB,Baxter RA.Energy efficient neural codes.Neural Computation,1996,8:531~543
  • 5[6]Levy WB,Baxter RA.Interpreting hippocampal function as recoding and forecasting.The Journal of Neuroscience,2002,22:4746~4755
  • 6[7]Laughlin SB,Sejnowski TJ.Communication in Neuronal Networks.Science,2003,301:1870
  • 7[8]Raichle Marcus E,Gusnard Debra A.Appraising the brain's energy budget.Proceedings of the National Academmy of Science,PNAS,2002,99,(16):10237~10239
  • 8[9]Smith Arien J,Blumenfeld Hal,Behar Kevin L,Rothman Douglas L,Shulman Robert G..Cerebral energetics and spiking frequency:The neurophysiological basis of fMRI.Proceedings of the National Academmy of Science,PNAS,2002,99,(16):10765~10770
  • 9[10]Hyder Fahmeed,Rothman Douglas L,Shulman Robert G..Total neuroenergetics support localized brain activity:Implications for the interpretation of fMRI.Proceedings of the National Academmy of Science,PNAS,2002,99,(16):10771~10776
  • 10[11]Soong T.T.Random differential equations in science and engineering.New York:Academic Press.1973

共引文献9

同被引文献55

  • 1董玮,王如彬,沈恩华,张志康.节律性步态运动中CPG对肌肉的控制模式的仿真研究[J].动力学与控制学报,2008,6(4):327-331. 被引量:9
  • 2Brown G.The intrinsic factors in the act of progression in the mammal[J].Proceedings of the Royal Society B:Biological Sciences,1911,84:308-319.
  • 3Grillner S.Some aspects on the descending control of the spinal circuits generating locomotor movements[A].In:Herman RM,et al,eds.Proceedings of an International Conference on Neural Control of Locomotion,Advances in behavioral biology[C].New York:Plenum,1976.77-82.
  • 4Kiehn O,Butt SJ.Physiological,anatomical and genetic identification of CPG neurons in the developing mammalian spinal cord[J].Prog Neurobiol,2003,70:347-361.
  • 5Choi JT,Bastian AJ.Adaptation reveals independent control networks for human walking[J].Nature Neuroscience,2007,10:1055-1062.
  • 6Gerasimenko YP,Makarovskii AN,Nikitin OA.Control of locomotor activity in humans and animals in the absence of supraspinal influences[J].Neurosci Behav Physiol,2002,32:417-423.
  • 7Zhang Dingguo,Zhu Kuanyi,Zheng Hang.Model the leg cycling movement with neural oscillator[A].In Piscataway NJ,ETATS-UNIS,eds.IEEE International Conference on Systems,Man and Cybern[C].Netherlands:IEEE,2004.1:740-744.
  • 8Warrick H,Cohen AH.Serotonin modulates the central pattern generator for locomotion in the isolated lamprey spinal cord[J].Biol,1985,116:27-46.
  • 9Zhang Dingguo,Zhu Kuanyi.Modeling biological motor control for human locomotion with function electrical stimulation[J].Biol Cybern,2007,96:79-97.
  • 10Marder E,Bucher D.Central pattern generators and the control of rhythmic movements[J].Current Biology,2001,11(23):986-996.

引证文献3

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部