期刊文献+

形状记忆合金薄板的分叉与激变 被引量:2

Bifurcations and Crises of a Shape Memory Alloy Plate
下载PDF
导出
摘要 研究了受横向载荷作用的形状记忆合金矩形薄板的非线性动力学特性及混沌行为。基于形状记忆合金材料的热-机耦合行为和拟弹性行为的五次多项式本构关系及薄板的动力学平衡方程,建立了反映形状记忆合金薄板动力学行为的非线性动力学模型;用平衡态定性分析法讨论了矩形薄板的动力学稳定性与材料相转换间的关系。利用数值模拟的方法,研究了形状记忆合金薄板动力系统的分叉和激变。分叉分析研究了随外加载荷变化和温度变化这两种情况时,系统的分叉结构。通过所绘制的分叉图和局部区域放大的分叉图,发现系统呈现出倍周期分叉、倒置的倍周期分叉、激变和突减等分叉现象。 This paper is concerned with the dynamic characteristic and chaotic behaviors of a shape memory alloy plate subjected to transverse dynamic load. Based on a fifth order polynoiacl constitutive description of the thermo-mechanical and pseudo-elastic behaviors of the shape memory alloy and the dynamic equilibrium equation of plate, the nonlinear dynamic model that dominates the transverse vibration of the plate was established. The relations between the dynamic stability of the plate and the equilibrium of the material phase were investigated by using the qualitative analysis method of a differential dynamic system. Finally, the bifurcations and crises of the shape memory alloy plate were considered by using the numerical simulations. Bifurcation analysis was carried out by considering the structure of bifurcations varying with force amplitude parameter, g, as well as the parameter related to temperature, θ. The analyses of these bifurcations and the enlargement of bifurcations diagram allows us to identify interesting behaviors, such as period doubling cascades, direct and reverse crises and subductions.
出处 《力学季刊》 CSCD 北大核心 2009年第1期71-76,共6页 Chinese Quarterly of Mechanics
基金 国家自然科学基金10472097
关键词 形状记忆合金 薄板 分叉 激变 shape memory alloy thin plate bifurcation crises
  • 相关文献

参考文献9

  • 1Machado L G, Savi M A, Pacheco P M. Nonlinear dynamics and chaos in coupled shape memory oscillators[J]. Int J of Solids and Structures, 2000,40:5139 - 5156.
  • 2Collet M, Foltete E, Lexcellent C. Analysis of the behavior of a shape memory alloy beam under dynamical loading[J]. Eur J Mech A- Solids, 2001,20:615 - 630.
  • 3Savi M A, Pacheco P M, Braga M B. Chaos in shape memory two-bar truss[J]. Int J of Non-linear Mechanics, 2002, 37: 1387 - 1395.
  • 4Seelecke S. Modeling the dynamic behavior of shape memory alloys[J]. Int J Non-linear Mech. 2002,37(8) : 1363 - 1374.
  • 5Tsai X Y, Chen L W. Dynamic stability of a shape memory alloy wire reinforced composite beam[J]. Composite Structures, 2002, 56: 235 - 241.
  • 6Birman V. Review of mechanics of shape memory alloy structures[J]. App Mech Reviw, 1997, 50:629- 645.
  • 7Falk F. Model free energy, mechanics, and thermodynamics of shape memory alloys[J]. Acta Metall, 1980,28:1773- 1780.
  • 8Machado L G, Savi M A, Pacheco P M C L. Bifurcations and crises in a shape memory oscillator[J]. Shock and Vibration 2004,11:67 - 80.
  • 9Grebogi C, Ott E, Yorke J A. Crises sudden changes in chaotic attractors and transient chaos[J]. Phsica D, 1983,7: 181 - 200.

同被引文献15

  • 1Wang Duo. A Recursive Formula and Its Application to Computations of Normal Forms and Focal Values[J]. Dynamical Systems(Eds. S-T. Liao,et al. ) ,World Sci Publ, Singapore, 1993 : 238-247.
  • 2Wang Duo, Mao Rui. A Complex Algorithm for Computing Lyapunov Values[J]. Random Cornput Dyn, 1994,2 (2-3) :261-277.
  • 3Wang Duo, Mao Rui. Jumping Property of Lyapunov Values[J]. Science in China, 1996,39(12) : 1280 -1287.
  • 4Yu Pei,Han Mao-an. Twelve Limit Cycles in a Cubic Case of the 16th Hilbert Problem[J]. Int J of Bifurc Chaos, 2005,15(7) :2191-2205.
  • 5Li J,Miao S F,Zhang W. Analysis on Bifurcations of Multiple Limit Cycles for a Parametrically and Externally Excited Mechanical System[J]. Chaos, Solitons and Fractals, 2007,31 (4) : 960-976.
  • 6Li J ,Chen Y, Zhang W,et al. Computation of Lyapunov Values for Two Planar Polynomial Differential Systems[J]. Ap- plied Mathematics and Computation, 2008,204( 1 ) : 240- 248.
  • 7Li J, Tian Y, Zhang W. Investigation of the Relation between Singular Points and the Number of Limit Cycles for a Rotor- AMB System[J]. Chaos,Solitons and Fractals ,2009,39(4) : 1627-1640.
  • 8Kukles IS,Necessary and Sufficient Conditions for the Existence of Center [J]. Dokl Acad Sci USSR, 1944,42:160-163 (In Russian).
  • 9Machado L G,Savi M A,Pacheco P M. Nonlinear Dynamics and Chaos in Coupled Shape Memory Oscillator[J]. Int J of Solids and structures, 2000,40 : 5139-5166.
  • 10陈莹,李静.Bautin系统的Lyapunov量复算法[J].力学季刊,2009,30(1):88-91. 被引量:6

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部