期刊文献+

基于进化采样的粒子滤波算法 被引量:16

The particle filter algorithm based on evolution sampling
下载PDF
导出
摘要 在粒子滤波算法中,重采样的引入有效地改善粒子退化现象,但同时也导致了粒子多样性减弱问题的产生.本文给出了一种基于进化采样的改进粒子滤波算法.该算法在重采样过程后,首先根据马尔可夫链蒙特卡罗(Markov-Chain-Monte-Carlo,MCMC)技术和遗传算法中的模拟二进制交叉原理生成候选粒子,并利用适应度函数完成对于其权重的度量.然后结合当前时刻的重采样粒子构建候选粒子集,进而提升了重采样后粒子的多样性,最终依据粒子自身的权重实现粒子的优选.仿真结果表明:该算法可有效地提高对于非线性系统状态的估计精度. In particle filter algorithm, the re-sampling step effectively solves the problem of particles degeneracy, however, it reduces the particle variety. An improved particle filtering algorithm is given based on the evolution sampling. In the process of re-sampling, this algorithm generates candidate particles based on the Markov-Chain-Monte-Carlo(MCMC) technique and the analog binary crossover principle, and then, weighs the sampling particles against their importance according to the fitness function. The current re-sampling particles are then associated in constructing the candidate particle set to enhance the variety of re-sampling particles. Finally, the optimizing selection of particles is realized based on the particle weigh. Simulation results show the method can effectively improve the state estimation precision.
出处 《控制理论与应用》 EI CAS CSCD 北大核心 2009年第3期269-273,共5页 Control Theory & Applications
基金 国家自然科学基金资助项目(60634030,60702066) 国家航空基金资助项目(2007ZC53037) 国家航天科技创新基金资助项目(CASC0214).
关键词 粒子滤波 重采样 粒子退化 进化计算 particle filter re-sampling particle degeneracy evolution computation
  • 相关文献

参考文献13

  • 1GORDON N J, SALMOND D J, SMITH A F M. Novel approach to non-linear/non-Gaussian bayesian state estimation[J]. IEEE Proceedings on Radar, Sonar and Navigation, 1993, 140(2): 107 - 113.
  • 2CRISAN D, DOUCET A. A survey of convergence results on particle filtering methods for practitioners [J]. IEEE Transactions on Signal Processing, 2002, 50(2): 736 - 746.
  • 3DOUCET A, GORDON N J. Sequential Monte Carol Methods in Practice[M]. New York: Springer-Verlag, 2001:247 - 272.
  • 4MERWE R V, DOUCET A, FRE1TAS N DE, et al. The unscented particle filter[R]//Technical Report of the Cambridge University Engineering Department CUED/F INFENG/TR, 380. England: Cambridge University Press, 2001:1 - 45.
  • 5杨小军,潘泉,王睿,张洪才.粒子滤波进展与展望[J].控制理论与应用,2006,23(2):261-267. 被引量:74
  • 6RONGHUA L, BINGRONG H. Coevolution based adaptive Monte Carlo localization[J]. International Journal of Advanced Robotic Systems, 2004, 1(3): 183 - 190.
  • 7叶龙,王京玲,张勤.遗传重采样粒子滤波器[J].自动化学报,2007,33(8):885-887. 被引量:43
  • 8PARK S, HWANG J, ROU K, et al. A new particle filter inspired by biological evolution: genetic filter[C] //Proceedings of World Academy of Science, Engineering and Technology. Bangkok, Thailand: IEEE, 2007, 21:459-463.
  • 9UASAKI K, HATANAKA T. Evolution strategies based particle filters for fault detection[C]//Proceedings of the IEEE Symposium on Computational Intelligence in Image and Signal Processing. Hawaiian, USA: IEEE, 2007:58 - 65.
  • 10莫以为,萧德云.基于进化粒子滤波器的混合系统故障诊断[J].控制与决策,2004,19(6):611-615. 被引量:23

二级参考文献78

  • 1JAZWINSKI A H. Stochastic Processes and Filtering Theory[M]. New York: Academic Press, 1970.
  • 2ANDERSON B D, MOORE J B. Optimal Filtering [ M]. New Jersey: Prentice-Hall, 1979.
  • 3BLOM H A P, BAR-SHALOM Y. The interacting multiple model algorithm for systems with Markovian switching coefficients [ J]. IEEE Trans on Automatic Control, 1988, 33 (8) :103 - 123.
  • 4BUCY R S, SENNE K D. Digital synthesis of nonlinear filters [ J ]. Automatica, 1971 , 7 ( 3 ) :287 - 298.
  • 5HAMMERSLEY J M, MORTON K W. Poor man's Monte Carlo [J]. J of the Royal Statistical Society B, 1954, 16( 1 ) :23 -38,
  • 6HANDSCHIN J E, MAYNE D Q. Monte Carlo techniques to estimate the conditional expectation in multi-stage non-linear filtering [J].Int J Control, 1969, 9(5): 547-559.
  • 7ZARITSKII V S, SVETNIK V B, SHIMELEVICH L I. Monte-Carlo techniques in problems of optimal information processing [J]. Automation and Remote Control, 1975, 36 (3) :2015 -2022.
  • 8GORDON N J, SALMOND D J, SMITH A F M. Novel approach to nonlinear/non-Gaussian Bayesian state estimation[J].IEE Proceedings-F, 1993, 140(2) :107 - 113.
  • 9LIU J S, CHEN R. Sequential Monte Carlo methods for dynamic systems [ J ]. J of the American Statistical Association,1998, 93(443) :1032 -1044.
  • 10DOUCET A, GODSILL S, ANDRIEU C. On sequential Monte Carlo sampling methods for Bayesian filtering [J]. Statistics and Computing, 2000, 10( 1 ) :197 -208.

共引文献134

同被引文献153

引证文献16

二级引证文献62

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部