期刊文献+

一种新颖的函数优化进化算法 被引量:1

A novel evolutionary algorithm for function optimization
下载PDF
导出
摘要 进化算法在求解全局优化问题时易陷入局部最优且收敛速度慢.为了解决这一问题,设计了一个基于下降尺度函数的杂交算子,利用下降尺度函数与种群的关系来寻找实值函数的下降方向.为了提高非均匀变异算子在进化后期的搜索能力,通过均衡算子的局部搜索和全局搜索能力使其在算法后期仍能跳出局部最优.在此基础上给出了一种新的进化算法.最后将其与9个现有的算法进行了比较,数值实验表明新算法快速有效. When an evolutionary algorithm is applied to global optimization problems, it may be trapped around the local optima of the objective function and has a low convergence-rate. To solve these problems, a crossover operator is developed based on a descent-marking function. This operator finds descent directions based on the relation between the descent-marking function and the population. To improve the search ability of a non-uniform mutation operator in the late stage of evolution, an improved non-uniform mutation operator is designed for balancing the ability of global search and local exploration, which makes the algorithm able to avoid the premature convergence in the final stage of evolution. Combining all these techniques, we present a novel evolutionary algorithm. The presented algorithm is compared with 9 existing ones by simulations. Finally, experimental results indicate that the proposed algorithm is fast and efficient for all the test functions.
出处 《控制理论与应用》 EI CAS CSCD 北大核心 2009年第3期345-348,共4页 Control Theory & Applications
基金 国家自然科学基金资助项目(60374063,60672026) 陕西省自然科学基础研究计划项目(2006A12).
关键词 下降尺度函数 函数优化 进化算法 全局收敛性 descent-marking function function optimization evolutionary algorithm global convergence
  • 相关文献

参考文献5

  • 1YAO X, LIU Y, LING M. Evolutionary programming made faster[J]. IEEE Transactions on Evolutionary Computation, 1999, 3(2): 82 - 102.
  • 2李宏,焦永昌,张莉,王宇平.一种求解全局优化问题的新混合遗传算法[J].控制理论与应用,2007,24(3):343-348. 被引量:19
  • 3XU W B, SUN J. Adaptive parameter selection of quantum-behaved particle swarm optimization on global level[C]//Proceedings of International Conference on Intelligent Computing. Berlin: Springer- Verlag, 2005:420 - 428.
  • 4GIMMLER J, STUTZLE T, EXNER T E. Hybrid particle swarm optimization: an Examination of the influence of iterative improvement algorithms on performance[C]//Proceedings of the Fifth International Workshop on Ant Colony Optimization and Swarm Intelligence. Berlin: Springer-Verlag, 2006:436 - 443.
  • 5周明,孙树栋.遗传算法原理及应用[M].北京:国防工业出版社,2001.

二级参考文献7

  • 1黄鵾,陈森发,周振国.基于正交试验法的小生境混合遗传算法[J].控制理论与应用,2004,21(6):1007-1010. 被引量:6
  • 2GOLDBERG D E.Genetic Algorithms in Search,Optimization and Machine Learning[M].Reading,Ma:Addison Wesley,1989.
  • 3YAO X,LIU Y LIN G M.Evolutionary programming made faster[J].IEEE Trans on Evol Comput,1999,3(2):82-102.
  • 4LI H,JIAO Y C,WANG Y P Integrating the simplified quadratic interpolation into the genetic algorithm for solving constrained optimization problems[C]//Proc of Int Conf on Computational Intelligence and Security.Germany:Springer,2005,1:247-254.
  • 5ONDREJ H,ANNA K.Improvements of real coded genetic algorithms based on differential operators preventing premature convergence[J].Advances in Engineering Software,2004,35(1):237-246.
  • 6WANG H F,WU K Y.Hybrid genetic algorithm for optimization problems with permutation property[J].Computers & Operations Research,2004,31(4):2453-2471.
  • 7ALI M M,TOORN A,VITANEN S.A numerical comparison of some modified controlled random search algorithms[J].J of Global Optimization,1997,11(4):377-385.

共引文献65

同被引文献12

  • 1徐宗本,高勇.遗传算法过早收敛现象的特征分析及其预防[J].中国科学(E辑),1996,26(4):364-375. 被引量:99
  • 2SRINIVAS M, PATNAIK L M. Adaptive probabilities of crossover and mutation in genetic algorithms [ J ]. IEEE Transaction on Systems, Man and Cybernetics, 1994,24 (4) : 656-667.
  • 3ARABAS J, MICHALEWICZ Z, MULAWKA J. GAVaPS--a genetic algorithm with varying population size [ C ]// MICHALEWICZ Z, SCHAFFER D, SCHWEFEL H P, et al. Proceedings of the First IEEE International Conference on Evolutionary Computation. Piscataway, New Jersey, USA : IEEE Service Center, 1994 : 73-78.
  • 4MUHLEBEIN H, SCHLIERKAMP-VOOSEN D. Predictive models for breeder genetic algorithms in continuous parameter optimization [ J ]. Evolutionary Computation, 1993,1 ( 1 ) :25-49.
  • 5WRIGHT A H, Genetic algorithms for real parameter optimization [C ]//RAWLINS G. Foundations of Genetic Algorithms. Morgan Kaufmann : San Mateo, 1991 : 205-218.
  • 6DEEP K, THAKUR M. A new crossover operator for real coded genetic algorithms[ J]. Applied Mathematics and Computation,2007,188:895-911.
  • 7DEEP K, SHASHI, KATIYAR V K. Global optimization of lennard-jones potential using newly developed real coded genetic algorithms[ C]. TOMAR G, ABRAHAM A, BHATNAGAR D, et al. 2011 International Conference on Communication Systems and Network Technologies. Jammu, India: IEEE Computer Society, 2011:614-618.
  • 8MURATA T, ISHIBUCHI H. Positive and negative combination effects of crossover and mutation operators in sequencing problems [ C ]//Proceedings of 1996 IEEE International Conference on Evolutionary Computation. Nagoya, Japen: IEEE Service Center, 1996 : 170-175.
  • 9林丹,李敏强,寇纪淞.用适应值激励机制提高遗传算法的效率[J].控制与决策,2000,15(6):759-761. 被引量:4
  • 10金聪.模糊自适应遗传算法及其性能分析[J].小型微型计算机系统,2001,22(9):1080-1082. 被引量:4

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部