期刊文献+

边故障超立方体中两条无故障点不交路 被引量:4

Two Fault-free Vertex-disjoint Paths in a Hypercube with Faulty Edges
下载PDF
导出
摘要 文中用归纳假设法证明了结论:当n≥3时,令超立方体中的边故障集∣F∣≤n-3,设x1,x2,y1,y2是Qn中4个顶点,使得距离d(x1,y1)和距离d(x2,y2)都是奇数,则在Qn-F中存在两条路P1和P2,使得V(P1)∩V(P2)=φ,V(P1)∪V(P2)=V(Qn),这里P1连接x1和y1,P2连接x 2和y 2,而且边故障集∣F∣=n-3(n≥3)是最佳上界. In this paper, the following result is obtained. Let Qn be the n --cube, where n≥ 3, and F be any subset of edges with |F|≤n-3 . Assume thai x1,x2,y1 and y2 be pairwise distinct vertices of Qn such that both the distance d(x1,y1) and d(x2,y2 ) are odd. Then there exist fault-free paths P1 between x1 and y1 and P2 between x1 and y2 such thatal V(P1)∩V(P2)=φ and V(P1)∪V(P2)=V(Qn). The upper bound n= 3 number of faulty edges is optimal.
出处 《漳州师范学院学报(自然科学版)》 2009年第1期7-9,共3页 Journal of ZhangZhou Teachers College(Natural Science)
关键词 超立方体 点内部不交路 边容错 Hypercube Vertex-disjoint path Edge-fault-tolerant
  • 相关文献

参考文献4

  • 1J. A. Bondy, U. S. R. Murty. Graph Theorywith Applications[M]. Macmillan Press, London, 1976.
  • 2R. Calla, V. Koubck. Spanning multi-paths in hypercubes[J]. Discrete Mathematics, 2007, 307: 2053-2066.
  • 3T.Dvo^1 ak. llamiltonian cycles with prescribed edges in hypercubes[J]. SIAM J.Discrete Math., 2005, 19: 135-144.
  • 4C. H. Tsai, J. J. M. Tan, T. Liang, L. H. Hsu. Fault-tolerant hamiltonian laccability of hypercubes[J]. Inform. Process. Lett, 2002, 83: 301-306.

同被引文献11

  • 1A.Bondy,U.S.R.Murty.Graph Theorywith Applications[M].London:Macmillan Press,1976.
  • 2T.Dvorák.Hamiltonian cycles with prescribed edges in hypercubes[J].SIAM J.Discrete Math,2005,19:135-144.
  • 3M.C.Yang,J.M.Tan,L.H.Hsu.Hamiltonian circuit and linear array embeddings in faulty k-ary n-cubes[J].Journal of Parallel and Distributed Computing,2007,67(4):362-368.
  • 4B.Bose,B,Broeg,Y.Kwon,Y.Ashir.Lee distance and topological properties of k-ary n-cubes[J].IEEE Transaction on Computers,1995,44(8):1021-1030.
  • 5RAK T DVO. Hamiltonian cycles with prescribed edges in hypereubes[ J]. SIAM J Discrete Math,2005,19:135-144.
  • 6BOSE B, BROEG B, KWON Y. Lee distance and topological properties of k-ary n-cube [ J ]. IEEE Transaction on Computers, 1995,44 (8) : 1021-1030.
  • 7JUNG-HEURN PARK. Many-to-Many Disjoint Path covers in two-dimensional Toil[ J]. Journal of KIISE,2011,38( 1 ) :42-48.
  • 8LIN SHANGWEI, WANG SHIYING. Panconnectivity and edge-pancyclicity of k-ary n-cubes with faulty elements [ J ]. Discrete Applied Mathematics ,2011,159:212-223.
  • 9佘卫强.边故障3-aryn立方体中两条无故障点不交路[J].漳州师范学院学报(自然科学版),2010,23(3):6-12. 被引量:2
  • 10张涌逸.故障k元n立方体网络中的多播容错路由算法[J].数字技术与应用,2013,31(9):109-109. 被引量:1

引证文献4

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部