摘要
文中用归纳假设法证明了结论:当n≥3时,令超立方体中的边故障集∣F∣≤n-3,设x1,x2,y1,y2是Qn中4个顶点,使得距离d(x1,y1)和距离d(x2,y2)都是奇数,则在Qn-F中存在两条路P1和P2,使得V(P1)∩V(P2)=φ,V(P1)∪V(P2)=V(Qn),这里P1连接x1和y1,P2连接x 2和y 2,而且边故障集∣F∣=n-3(n≥3)是最佳上界.
In this paper, the following result is obtained. Let Qn be the n --cube, where n≥ 3, and F be any subset of edges with |F|≤n-3 . Assume thai x1,x2,y1 and y2 be pairwise distinct vertices of Qn such that both the distance d(x1,y1) and d(x2,y2 ) are odd. Then there exist fault-free paths P1 between x1 and y1 and P2 between x1 and y2 such thatal V(P1)∩V(P2)=φ and V(P1)∪V(P2)=V(Qn). The upper bound n= 3 number of faulty edges is optimal.
出处
《漳州师范学院学报(自然科学版)》
2009年第1期7-9,共3页
Journal of ZhangZhou Teachers College(Natural Science)
关键词
超立方体
点内部不交路
边容错
Hypercube
Vertex-disjoint path
Edge-fault-tolerant