摘要
本文改进了单尺度分数高斯小波变换奇异性分析算法,在原有奇异点位置及奇异性指数探测算法的基础上,实现了对奇异性极性的探测.分析认为测井曲线的奇异性信息具有明确的地质意义:测井曲线中奇异点的位置指示层序界面.奇异性指数的大小与沉积环境间存在一定的对应关系,而奇异性极性信息可用于判断基准面的升降方向.提出了利用不同尺度下测井曲线的奇异性特征来识别和研究不同级次沉积旋回的方法,该方法弥补了常规方法的缺陷,为高分辨率层序地层划分提供了定量分析工具,实际资料的成功应用验证了本方法的有效性.
The paper develops the method of mono-scale fractional-order Gaussian wavelet transform singularity algorithm, based on the conventional algorithm for singularity positions and strength index. The improved method realizes the detection of singularity polarity. The geologic significances of logging data singularity information are also presented, according to our analysis, the singularity positions indicate the sequence stratigraphie boundary, and there is a subtle relationship between the singularity strength index and sedimentary environment, meanwhile the singularity polarity can be used to recognize stratigraphic base-level cycle. Based on all those above, we propose a new method of sedimentary cycle analysis method based on the singularity information of logging data with multiple scales. The method overcomes the disadvantages in conventional method, and provides a quantitative tool for judging interface of stratum sequence. Good results were achieved in the actual application.
出处
《地球物理学报》
SCIE
EI
CAS
CSCD
北大核心
2009年第3期824-832,共9页
Chinese Journal of Geophysics
基金
中国科学院知识创新工程重要方向项目资助(KZCX2-YW-203).
关键词
奇异性信息
尺度
分数高斯小波变换
测井曲线
层序地层
Singularity information, Scale, Fractional-order Gaussian wavelet transform, Well logging curve, Sequence stratigraphy