期刊文献+

柠檬酸钠对L-组氨酸发酵代谢流分布的影响 被引量:7

Effects of Sodium Citrate on Metabolic Flux Distributions of L-Histidine Production
下载PDF
导出
摘要 目的:建立谷氨酸棒杆菌TL1105生物合成L-组氨酸的代谢网络模型,并进行代谢网络计量分析。方法:通过所构建的L-组氨酸代谢网络模型,利用MATLAB软件计算出添加柠檬酸钠和不添加柠檬酸钠发酵中后期代谢网络的代谢流分布。结果:在L-组氨酸分批发酵过程中,在发酵初期未添加柠檬酸钠的条件下流向戊糖磷酸途径(HMP)的代谢流为9.59,合成组氨酸的代谢流为8.91;在发酵初期添加2g/L柠檬酸钠的条件下流向HMP的代谢流为12.74,合成组氨酸的代谢流为9.61。结论:在发酵初期添加柠檬酸钠能够改变L-组氨酸生物合成途径的关键节点6-磷酸葡萄糖、丙酮酸及乙酰辅酶A的代谢流分布,保持糖酵解途径、三羧酸循环与HMP之间代谢流量平衡,有利于提高L-组氨酸生物合成途径的代谢流量,最终使流向组氨酸的代谢流增加了7.86%。 Objective: The metabolic flux balance model of L-histidine synthesis by Corynebacterium glutamicum TL1105 was established and the stoichiometric analysis of L-histidine biosynthesis was conducted. Methods: Based on this model, the practical metabolic flux distribution in the middle and late period with sodium citrate and without sodium citrate were determined with the linear program planted in MATLAB softwere. Results: The results show that the metabolic flux channeled to hexose monophosphate pathway (HMP) and L-histidine synthesis pathway is 9.59 and 8.91 respectively in the batch fermentation without the addition of sodium citrate and this metabolic flux becomes 12.74 and 9.61 respectively when sodium citrate(2.0 g/L) was added to the fermentation medium in the beginning. Conclusion: The addition of sodium citrate can change the metabolic flux distributions of the key nodes(glucose-6-phosphate, pyruvic acid, acetylcoenzyme A) and keep the metabolic flux balance among Embden-Meyerhof-Parnas pathway(EMP), tricarboxylic acid cycle(TCA) and HMP, which strengthens the L-histidine biosynthesis. L-histidine biosynthesis inscreases 7.86% finally.
出处 《生物技术通讯》 CAS 2009年第2期202-204,212,共4页 Letters in Biotechnology
基金 "十一五"国家科技支撑计划(2008BAI63B01)
关键词 L-组氨酸 发酵 柠檬酸钠 代谢流 L-histidine fermentation sodium citrate metabolic flux
  • 相关文献

参考文献12

  • 1王宏龄,富春江.国内外氨基酸市场分析(一)[J].精细与专用化学品,2004,12(1):17-20. 被引量:9
  • 2张天民,王凤山.氨基酸与生化药物[J].氨基酸和生物资源,1999,21(4):1-3. 被引量:6
  • 3马红武,赵学明,郭晓峰,鲁晋.结合元素组成数据进行细胞生长过程代谢通量分析[J].化工学报,2002,53(8):847-852. 被引量:9
  • 4Kromer J O, Wittmann C, Schroder H, et al. Metabolic pathway analysis for rational design of L-methionine production by Escherichia coli and Corynebacterium glutamicum [J]. Metab Eng, 2006,8(4):353-369.
  • 5Pharkya P, Brugard A P, Maranas C D. Exploring the overproduction of amino acids using the bilevel optimization framework Opt-Knock[J]. Biotechnol Bioeng, 2003,84(7):887-899.
  • 6Bonarius H P J, Schmid G, Trmper J. Flux analysis of anderdeter-mined metablic net works: the quest for the missing constrains[J]. Trends Biotechnol, 1997,15:308-314.
  • 7Wolfgang W C. Metabolic Flux Analysis[J]. Metab Eng, 2001,3: 195-206.
  • 8Lee K, Berthiaume F, Stephanopoulos G N, et al. Metabolic flux analysis; a powerful tool for monitoring tissue function [J]. Tissue Eng, 1999,5(4) : 347-368.
  • 9Stephanopoulos G N, Aristidou A A, Nielsen J. Metabolic network analysis of Bacillus elausii on minimal and semirieh medium using super ^13C-labeled glucose[J]. Metab Eng, 2002.4(22): 159-169.
  • 10Vallino J J, Stephanopoulos G.Metabolic flux distributions in Dove- bacterium glutamicum during growth and lysine overproduction [J]. Biotechnol Bioeng, 1993,41:633-646.

二级参考文献29

  • 1张天民 姚世文 等.-[J].中国生化药物杂志,1995,16(5):240-240.
  • 2氨基酸和生物资源编辑部.-[J].氨基酸和生物资源,1999,21(3):16-16.
  • 3[1]Muzzio T, Acevedo F. Theoretical yield in in nucleotide prduction by fermentation. Process Biochem, 1985,20: 60 - 65.
  • 4[2]Sauer U, Cameron D C, Bailey J E. Metabolic capacity of Bacillus subtilis for the production of purine nucleioside, riboflavin, and folic acid. Biotech and Bioeng, 1998,59(2) :227 - 238.
  • 5[3]Majewski R A, Domach M M. Simple constrained-optimization view of acetate overflow in E. coli. Biotechnology and Bioengineering,1990,35:732 - 738.
  • 6[4]Akshay G,Jinwoon L,Michale M, et al. Metabolic fluxes,pool and enzyme measurements suggest a tighter coupling of energetics and biosynthetic reactions associated with reduced pyruvate kinase flux.Biotechnol and Bioeng, 1999,64 (2): 129 - 134.
  • 7[5]Postma E, Scheffers W A, van Dijken J P. Adaptation of the kinetics of glucose transport to envirmental conditions in the yeast Candida utilis CBS 621 continuous-culture study. J Gen Microbiol, 1988,134:1109- 1116.
  • 8[6]Alves A M C R, Euverink G J W, Bibb M J, et al. Identification of ATP-Dependent phosphofructokinase as a regulatory step in the glyolytic pathway of the Actinomycete streptomyces coelicolor A3(2). Appl Envio Microbiol, 1997,63(3) :956 - 961.
  • 9[7]Malcovati M. Valentini G. AMP and fructose 6-phophate activated pyruvate kinase from E. coli. Methods Enzymol, 1982,90:170 -179.
  • 10[8]Fortnagel P, Freese E. Analysis of sporulation mutants. 2. Mutants blocked in the citric acid cycle. J Bacteriol, 1969,95:1434 - 1438.

共引文献47

同被引文献101

引证文献7

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部