期刊文献+

基于动态贝叶斯网构建基因调控网络 被引量:5

Constructions of Gene Regulatory Networks based on Dynamic Bayesian Network
下载PDF
导出
摘要 动态贝叶斯网络(dynamic bayesian network,DBN)是一种基于时序表达数据构建基因调控网络的重要方法。然而目前的DBN方法因计算时间太长,结构不稳定,准确度低,对有效性有很大影响。根据动态贝叶斯网络的度量可分解性质,将动态贝叶斯网络分为初始网络与转移网络分别进行结构寻优,在寻优时将基于静态贝叶斯网络的最大权重生成树算法与贪婪搜索算法相结合,移植入动态贝叶斯网络中,建立基因调控网络模型。提出了一种从时序数据中构建基因调控网络的方法,克服了贝叶斯网络不能描述循环调控的缺陷,也从规模上简化了网络构建问题。通过与相关实验文献的对照,验证了提出方法的有效性,网络学习时间明显缩短,网络结构更加稳定。 Dynamic Bayesian network (DBN) is an important approach for predicting the gene regulatory networks from time course expression data. However, three problems greatly reduce the effectiveness of current DBN methods, including long computational time, instable structures, and low accuracy. According to the property of decomposability of DBN, we divided DBN into initial network and transferring network, and combined Maximum Weight Spanning Tree algorithm (MWST) and Greedy Search(GS) algorithm both based on BN, then transplanted the mixed algorithm into DBN, to build the gene regulatory network model. We presented a gene regulatory network - building approach based on temporal expression data. Unlike previous DBN methods, our approach can described cycle - regulation among genes, and reduced the computational time in modeling the network. We verify the effectiveness of our approach by consulting the corresponding experiment articles, and reduce the computational time in learning network, finally get more stable structures.
作者 强波 王正志
出处 《生物医学工程研究》 2008年第3期145-149,共5页 Journal Of Biomedical Engineering Research
基金 国家自然科学基金资助项目(60471003)
关键词 时序表达数据 动态贝叶斯网络 度量可分解 最大权重生成树算法 贪婪搜索算法 基因调控网络 Temporal expression data Dynamic Bayesian network Measurement dividable Maximum weight spanning tree algorithm Greedy search algorithm Gene regulatory network
  • 相关文献

参考文献11

  • 1Akutsu T,Miyano S.Algorithms for identifying Boolean networks and related biological networks based on matrix multiplication and fingerprint function[J].J Comput Biol,2000(7):331-343.
  • 2Wahde M,Hertz J.Coarse-grained reverse engineering of genetic regulatory netwotks[J].Biosyatems,2000(55):129-136.
  • 3Friedman N,Linial M,Nachman I,et al.Using Bayesian networks to analyze expression data[J].J Comput Biol,2000(7):601-620.
  • 4Murphy K,Mian S.Modelling gene expression daga using dynamic bayesian networks[J].Technical Report MIT Artificial Intelligence Laboratory,1999.
  • 5Sun Yong Kim,Imoto S,Miyano S.Ingerring gene networks from time series microarray data using dynamic Bayesian networks[J].Biiefings inBioinfomatics,2003 9,4(3):228-235.
  • 6Perrin B,Ralaivola L,A A.Gene networks inference using dynamic Bayesian Networks[J].Bioinformatics,2003,1 (1):1-10.
  • 7Heckerman D,Geiger D,Chickering DM.learning Bayesian networks:the combination of knowledge and statistical data[J].Machine Learning,1995,20:197-243.
  • 8chou CK,liu CN.Approximating discrete prohablity distrubutions with dependence trees[J].IEEE Transactions on Information Theory,1968,14(3):462-467.
  • 9Whitfield M L,Sherlock G,Saldanha A J,et al.Identification of Genes Periodically Expressed in the Human Cell Cycle and Their Expression in Tumors[J].Molecular Biology of the Cell,2002,13(6):1977-2000.
  • 10Spellman PT,Sherlock G,Zhang MQ,et al.Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by mocrparrary hybridization[J].Mol Biol Cell,1998,9(12):3273-3297.

二级参考文献12

  • 1Vorburger SA,Pataer A,Yoshida K,et al.The mitochondrial apoptosis-inducing factor plays a role in E2F-1-induced apoptosis in human colon cancer cells[J].Ann Surg Oncol,2003,10(3):314-322.
  • 2Parisi T,Pollice A,Cristofano AD,et al.Transcriptional regulation of the human tumor suppressor p14ARF by E2F,E2F2,E2F3,and Sp1-like factors[J].Biochem Biophys Res Commun,2002,291(5):1138-1145.
  • 3Rogo HA,Picketing MT,Debatis ME,et al.E2F1 Induces phosphorylation of P53 that is coincident with P53 accumulation and apoptosis[J].Mol Cell Biol,2002,22(15):5308-5318.
  • 4Powers JT,Hong S,Mayhew CN,et al.E2F1 uses the ATM signaling pathwaytoinduce P53 and Chk2 phosphorylation and apoptosis[J].Mol Cancer Res,2004,2(4):203-214.
  • 5Berkovich E,Ginsberg D.ATM is a target for positive regulation by E2F-1[J].Oncogene,2003,22(2):161-167.
  • 6Harry AR,Mary TP,Fiona MF,et al.Apoptosis associated with deregulated E2F activity is dependent on E2F1 and Atm/Nbs1/Chk2[J].Mol Cell Biol,2004,24(7):2968-2977.
  • 7Hsieh JK,Yap D,O'Connor DJ,et al.Novel function of the cyclin A binding site of E2F in regulating P53-induced apoptosis in response to DNA damage[J].Mol Cell Biol,2002,22(1):78 -93.
  • 8Furukawa Y,Nishimura N,Furukawa Y,et al.ApaF-1 is a mediator of E2F-1-induced apoptosis[J].J Biol Chem,2002,277 (42):39760-39768.
  • 9Hershko T,Ginsberg D.Up-regulation of bcL-2 homology 3 (BH3)-only proteins by E2F1 mediates apoptosis[J].J Biol Chem,2004,279(10):8627-8634.
  • 10Fortin A,MacLaurin JG,Arbour N,et al.The proapoptotic gene SIVA is a direct transcriptional target for the tumor suppressors P53 and E2F1[J].J Biol Chem,2004,279 (27):28706 -28714.

共引文献4

同被引文献53

  • 1秦小虎,刘利,张颖.一种基于贝叶斯网络模型的交通事故预测方法[J].计算机仿真,2005,22(11):230-232. 被引量:21
  • 2虞慧婷,吴骋,柳伟伟,付旭平,贺佳.基因调控网络模型构建方法[J].第二军医大学学报,2006,27(7):737-740. 被引量:6
  • 3AKUTSU T, KUHARA S, MIYANO S. Algorithms for identifying Boolean networks and related biological networks based on matrix multiplication and fingerprint function [ J ]. Journal of Computational Biology,2000,7( 3-4 ) :331 - 343.
  • 4WAHDE M, HERTZ J. Coarse-grained reverse engineering of genetic regulatory networks [ J ]. Biosystems, 2000,55 ( 1-3 ) : 129- 136.
  • 5FRIEDMAN N, LINIAL M, NACHMAN I, et al. Using Bayesian network to analyze expression data[ J]. Journal of Computational Biology, 2000,7(3-4):601-620.
  • 6LEARY P, FRANCOIS O. BNT structure iearning package : documentation and experiments[ R]. 2004.
  • 7FRIEDMAN N, MURPHY K, RUSSELL S. Learning the structure of dynamic probabilistic networks[ C ]//Proc of the 14th Conference on Uncertainty in Artificial Intelligence. 1998:139- 147.
  • 8SPELLMAN P T, SHERLOCK G, ZHANG M Q, et al. Comprehensive identification of cell cycle-regulated genes of the yesat saccaromyces cerevisiae by microarray hybridization[J]. Mol Biol Cell, 1998, 9(12) :3273- 3297.
  • 9Home page of KEGG[ EB/OL]. http ://www. genome, ad. jp/kegg.
  • 10KIM S, IMOTO S, MIYANO S. Dynamic Bayesian network and nonparametric regression for nonlinear modeling of gene networks from time series gene expression data [ J ]. Biosystems, 2004,75 ( 1-3 ) : 57- 65.

引证文献5

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部