期刊文献+

全α类蛋白质超家族保守模体特征的分析 被引量:1

Analysis of Conservative Motif Features of the Protein Superfamilies in All α Class
下载PDF
导出
摘要 选取了全α类中序列一致性小于等于40%和25%的四个有代表性的超家族,并从中提取序列模体和结构模体,分析了其结构和功能特征的差异.结果表明,细胞色素C超家族和EF手超家族中已知功能的模体类型相对单一,而类同源域超家族和翼螺旋DNA结合域超家族中序列模体类型较多,但是主要以HTH和wHTH两种结构模体为主.进一步对模体的相对位置进行统计分析和比较,发现无论是已知功能的模体还是基于统计学方法识别的模体,它们相对于序列N端和C端的分布均呈现一定的规律性.这些特征和规律将对蛋白质超家族的识别以及结构域的研究提供有力的帮助. Four representative protein suprefamilies are chosen from all α protein class. The sequence and structure motifs are extracted from the sequences with identity less than 40% and 25%. By discussing their different function features, the results indicate that the known function motifs are relatively single in Cytochrome C superfamily and EF-hand superfamily. Many types of sequence motifs responding to structural motif are HTH and wHTH in Homeodomain-Like and the " Winged helix" DNA-binding domain superfamily,respectively. By calculating and comparing motif position ,some important regularities of the position distribution are obtained. The distance between motifs and C (or N) terminal of sequence is conservative for motif whether from function or statistic significance. These correlated regularities will have some important help for identifying different protein superfamilies and the protein domains.
出处 《内蒙古大学学报(自然科学版)》 CAS CSCD 北大核心 2009年第2期178-185,共8页 Journal of Inner Mongolia University:Natural Science Edition
基金 国家自然科学基金资助项目(30560039)
关键词 蛋白质超家族 模式 模体的功能 模体相对位置分布 protein superfamily pattern function of motif conservative motif distribution
  • 相关文献

参考文献15

  • 1Andreeva A,Howorth D,Chandonia J M,et al. Data growth and its impact on the SCOP database:new development [J]. Nucleic Acids Res, 2008,36 (D) : D419-425.
  • 2Lindahl E,Eiofsson A. Identification of related proteins on family, superfamily and fold level [J]. J Mol Biol, 2000,295(3) :613-625.
  • 3王明怡,杨益,吴平等译校.WestheadDR.ParishJH,TwymanRM.生物信息学[M].北京:科学出版社,2004.
  • 4Ausiello G ,Gherardini P F.Marcatili P,et al. FunClust :a web server for the identification of strueturalmotifs in a set of non-homologous protein structures [J]. BMC Bioinformatics,2008,9(Suppl 2):$2.
  • 5Wang X Y, Schroeder D, Dpbbs D, et al. Automated data-driven discovery of motif-based protein function classifiers [J]. Information Sciences, 2003,155 : 1 - 18.
  • 6Chou K C,Cai Y D. Using functional domain composition and support vector machines for prediction of protein subcellular location [J]. J Biol Chem, 2002,277 (48) : 45 765 - 45769.
  • 7张松,夏学峰,沈金城,孙之荣.基于序列保守性和蛋白质相互作用的真核蛋白质亚细胞定位预测[J].生物化学与生物物理进展,2008,35(5):531-535. 被引量:8
  • 8Ouintaje B S, Orchard S. Completion of the annotation of both human and mouse kinomes in UniProt-KB/ Swiss-Prot:One small step in manual annotation,one giant step for full comprehension of genomes [J]. Mol Cell Proteomics, 2008,7 : 1409 - 1419.
  • 9de Castro E, Sigrist C J,Gattiker A, et al. prosite: detection of PROSITE signature matches and ProRule- associated functional and structural residues in proteins [J ]. Nucleic Acids Res, 2006,34 (W) : W362- 365.
  • 10Bailey T L,Elkan C. Fitting a mixture model by expectation maximization to discover motifs in biopolymers [J]. Proc Int Conf Intell Syst Mol Biol,1994,2:28-36.

二级参考文献1

共引文献7

同被引文献26

  • 1施建宇,潘泉,张绍武,梁彦.基于支持向量机融合网络的蛋白质折叠子识别研究[J].生物化学与生物物理进展,2006,33(2):155-162. 被引量:19
  • 2Martin ACR, Orengo CA, Hutchinson EG, Jones S, Laskowski RA, Mitchell JBO, Taroni C, Thornton JM. Protein folds and functions. Structure, 1998, 6(7): 875-884.
  • 3Krishna SS, Grishin NV. Structural drift: a possible path to protein fold change. Bioinformafics, 2005, 21(8): 1308-1310.
  • 4Thomas P J, Qu BH, Pedersen PL. Defective protein folding as a basis of human disease. Trends Biochem Sci, 1995, 20(11): 456-459.
  • 5Ding CHQ, Dubchak I. Multi-class protein fold recognition using support vector machines and neural networks. Bioinformatics, 2001, 17:349-358.
  • 6Chinnasamy A, Sung WK, Mittal A. Protein structure and fold prediction using tree-augmented naive bayesian classifier. J Bioinform Comput Biol, 2005, 3(4): 803-819.
  • 7Shen HB, Chou KC. Ensemble classifier for protein fold pattern recognition. Bioinformatics, 2006, 22(14): 1717-1722.
  • 8Zhang HG, Hu XZ., Li QZ. The recognition of 27-Class protein folds: approached by increment of diversity based on multi-characteristic parameters. Prot Pept Lett, 2009, 16(8): 1112-1119.
  • 9Nakashima H, Nishikawa K, Ooi T. The folding type of a protein is relevant to the amino acid composition. J Biochem(Tokyo), 1986, 99(1): 153-162.
  • 10Rest B, Sander C. Combining evolutionary information and neural networks to predict protein secondary structure. Proteins, 1994, 19(1): 55-72.

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部