期刊文献+

基于兴趣度的关联规则在选课分析中的应用 被引量:3

Application of the Association Rules Based on Interesting in Course-selecting Analysis
下载PDF
导出
摘要 通过对关联规则经典算法Apriori的分析,并应用到选课分析系统中,发现了存在的问题.通过增加兴趣度阈值以提高关联规则在数据挖掘中的精度,从而有效的减少了无用规则的产生,为学生选课系统的实现提供了较好的支持. By analyzing the classic algorithm of association rules and using in course-selecting system, some problems are found. Through increasing interesting threshold the precision of association rules can be improved in data mining, accordingly the useless rules are reduced effectively,which is very useful for the implementation of curse-selecting system.
出处 《内蒙古大学学报(自然科学版)》 CAS CSCD 北大核心 2009年第2期199-202,共4页 Journal of Inner Mongolia University:Natural Science Edition
基金 辽宁省教育厅科学技术研究项目(2008314)
关键词 数据挖掘 关联规则 兴趣度 选课 data mining association rules interesting course-selecting
  • 相关文献

参考文献5

二级参考文献18

  • 1陆晶,赛英.基于综合度量的关联规则挖掘算法[J].计算机工程,2004,30(22):89-90. 被引量:4
  • 2[1]Robert Groth. Data Mining:Building competitive advantage[M].USA: Prentiee-Hall Ptr, 1999
  • 3[2]Chen Lei-da et al.Data mining methods,applications,tools[J].Information Systems Management ,2000; 17( 1 ) :65~70
  • 4[3]H Mannila,Ht Toivonen et al.Efficient algorithms for discovering as sociation rules[C].In: Knowledge Discovery in Databases (KDD'94), AAAI Press, 1994:181~192
  • 5[4]F H Grupe,M M Owrang.data base mining[J].Information SystemsManagement, 1995; 12 (4): 26~31
  • 6[5]R L Scheier. Finding pearls in an ocean of data[J].Computerworld,2001 ;35(30) :49~50
  • 7[6]N Melab. Data mining:A key eontribution to E-business[J].Information & Communications Technology Law,2001; 10(3) :309~318
  • 8[7]L Scott Tillett. Banks mine customer data[J].InternetWeek,2000;831: 45 ~46
  • 9[8]Larry Stevens.It sharpens data mining's focus[J].InternetWeek,2001; 872:29~30
  • 10[9]Neena Buck. Eureka!Knowledge discovery[J].Software Magazine.2000-12/ 2001-01 ;20(6) :24~29

共引文献92

同被引文献15

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部