摘要
谱聚类算法利用特征向量构造简化的数据空间,在降低数据维数的同时,使得数据在子空间中的分布结构更加明显。该文提出了一种粗糙谱聚类算法,并将其应用于文本数据挖掘。实验表明,该算法与现有的文本聚类算法相比,准确率有一定的提高。
The spectral clustering algorithm constructs a simplified data space making the use of the eigenvectors that not only reduces the dimension of data but also gives clearer distribution of data in'the subspace. This paper proposes a rough spectral clustering algorithm and apply the algorithm on text data mining. Experiment results indicate that the proposed algorithm outperforms the existing text clustering algorithms in accuracy.
作者
郑吉
ZHENG Ji (Department of Computer Science and Technology, Tongji University, Shanghai 201804, China)
出处
《电脑知识与技术》
2009年第3期1557-1558,共2页
Computer Knowledge and Technology
关键词
粗糙集
谱聚类
文本聚类
rough set
spectral clustering
text clustering