期刊文献+

粗糙谱聚类在文本挖掘中的应用

The Application of Rough Spectral Clustering on Text Data Mining
下载PDF
导出
摘要 谱聚类算法利用特征向量构造简化的数据空间,在降低数据维数的同时,使得数据在子空间中的分布结构更加明显。该文提出了一种粗糙谱聚类算法,并将其应用于文本数据挖掘。实验表明,该算法与现有的文本聚类算法相比,准确率有一定的提高。 The spectral clustering algorithm constructs a simplified data space making the use of the eigenvectors that not only reduces the dimension of data but also gives clearer distribution of data in'the subspace. This paper proposes a rough spectral clustering algorithm and apply the algorithm on text data mining. Experiment results indicate that the proposed algorithm outperforms the existing text clustering algorithms in accuracy.
作者 郑吉 ZHENG Ji (Department of Computer Science and Technology, Tongji University, Shanghai 201804, China)
出处 《电脑知识与技术》 2009年第3期1557-1558,共2页 Computer Knowledge and Technology
关键词 粗糙集 谱聚类 文本聚类 rough set spectral clustering text clustering
  • 相关文献

参考文献8

  • 1Pawan Lingras,Chad West.Interval Set Clustering of Web Users with Rough K-Means[J].Journal of Intelligent Information Systems.2004(1)
  • 2Hagen L,Kahng A B.New spectral methods for ratio cut partitioning and clustering[].IEEE Transactions on Computer-Aided Designof Integrated Circuits and Systems.1992
  • 3.Newsgroups[]..
  • 4Shi J,Malik J.Normalized cuts and image segmentation[].IEEE Transactions on Pattern Analysis and Machine Intelligence.2000
  • 5Bach R,Jordan M I.Learning spectral clustering[].Technical report UCB/CSD--University of California at Berkeley.2003
  • 6Ding C H Q,He X,Zha H,et al.A min-max cut algorithm for graph partitioning and data clustering[].ICDM.2001
  • 7Lingras P,West C.Interval set clustering of web users withrough kmeans[].Journal of Intelligent Information Systems.2004
  • 8I.,Dhillon.Co-clustering documents and words using Bipartite Spectral Graph Partitioning[].The th ACM SIGKDD (KDD ').2001

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部