期刊文献+

结合谱减和缺失特征重建的鲁棒性话者识别 被引量:2

Missing Feature Reconstruction with Spectral Subtraction for Robust Speaker Identification
下载PDF
导出
摘要 针对加性噪声影响下文本无关说话人识别系统性能急剧下降的问题,提出谱减和缺失特征重建相结合的方法。该方法将被噪声严重污染的频段称为缺失特征,采用谱减法对语音信号进行前端处理,并检测缺失特征;利用基于聚类的重建方法,由可靠特征估计缺失特征。在YOHO数据库上信噪比(SNR)为5~20dB的实验表明,相对于单独的谱减法和缺失特征重建方法,该方法的识别性能有显著提高。 Considering the problem of training/testing mismatch caused by the additive noise in the text-independent speaker identification framework, a new method for the combination of the spectral subtraction and the missing feature reconstruction is presented. The method labels highly corrupted features as missing features,adopts the spectral subtraction to mitigate the noise and detect missing features ,and uses the cluster-based reconstruction to recover missing features. Experimental results on YOHO data base show that the combined method outperforms the spectral subtraction and the missing feature reconstruction alone when SNR is 5- 20 dB.
出处 《数据采集与处理》 CSCD 北大核心 2009年第2期149-153,共5页 Journal of Data Acquisition and Processing
关键词 说话人识别 缺失特征重建 谱减 鲁棒性 speaker identification missing feature reconstruction spectral subtraction robustness
  • 相关文献

参考文献8

  • 1Onega-Garcia J, Gonza' lez-Rodriguez J. Overview of speaker enhancement techniques for automatic speaker recognition[C]//Proc of ICSLP. Philadelphia,PA :IEEE, 1997 : 929-932.
  • 2Wong L P, Russell M. Text-dependent speaker verification under noisy conditions using parallel model combination[C]//Proc of IEEE ICASSP. Salt Lake City, UT:IEEE, 2001: 457-460.
  • 3Vizinho A,Green P, Cooke M, et al. Missing data theory, spectral subtraction and signal-to-noise esti- mation for robust ASR: an integrated study [C]// Proceedings of Sixth European Conference on Speech Communication and Technology. Budapest: Eurospeech, 1999: 2407-2410.
  • 4Cooke M, Green P,Josifovski L,et al. Robust automatic speech recognition with missing and uncertain acoustic data[J]. Speech Communication, 2001,34 (3) :267-285.
  • 5Raj B, Seltzer M L, Stern R M. Reconstruction of missing features for robust speech recognition [J]. Speech Communication, 2004,43 (4) : 275-296.
  • 6Raj B. Reconstruction of incomplete spectrograms for robust speech recognition[D]. Pittsburgh,USA: ECE Department, Carnegie Mellon University, 2000.
  • 7Padilla M T, Quatieri T F, Reynolds D A. Missing feature theory with soft spectral subtraction for speaker verification [C]//Proceedings of the Ninth International Conference on Spoken Language Processing (ICSLP). Pittsburgh: Interspeech, 2006: 913-916.
  • 8Campbell J. Testing with the YOHO CD-ROM voice verification corpus[C]//Proe of IEEE ICASSP. Detroit, USA : IEEE, 1995 : 341-344.

同被引文献21

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部