期刊文献+

一种基于相容关系的聚类算法 被引量:2

Clustering on compatible relation
下载PDF
导出
摘要 聚类分析是数据挖掘中一个重要研究内容。传统的聚类算法可划分为硬聚类和模糊聚类两大类,提出一种基于对象集上的相容关系的聚类算法,该算法通过极大相容簇来对数据对象集进行分类,使得同一对象可以属于不同的簇,而每个簇又有自己独有的成员对象,从而得到既不同于硬聚类也不同于模糊聚类的聚类效果。实验进一步表明了该算法的聚类的合理性。 Cluster analysis had played a very important role in data mining. This paper proposed a new algorithm based on compatible relation. The new algorithm grouped objects by the maximum compatible clusters and permited one object belonging to several different clusters while every cluster had its exclusive members, which gained a different clustering result from the traditional cluster algorithms. The experiments get a consistent result.
出处 《计算机应用研究》 CSCD 北大核心 2009年第4期1302-1304,共3页 Application Research of Computers
基金 东华大学博士论文创新资助项目(BC200817)
关键词 聚类 相容关系 相容(子)集 cluster compatible relation compatible subset
  • 相关文献

参考文献11

  • 1JA1N A K, MURTY M N, FLYNN P J. Data clustering: a review [ J ]. ACM Computing Surveys, 1999,31 (3) : 264- 323.
  • 2LIU Jin-ze, ZHANG Qi, WANG Wei, et al. Clustering pairwise dissimilarity data into partially ordered sets[ C ]//Proc of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York : ACM Press, 2006:637- 642.
  • 3LIU Jin-ze, ZHANG Qi, WANG Wei, et al. PoClustering: lossless clustering of dissimilarity data[ C ]//Proc of the 7th SIAM International Conference on Data Mining. 2007:55-81.
  • 4SOCOLOVSKY E A. A dissimilarity measure for clustering high-and infinite dimensional data that satisfies the triangle inequality [ R ]. NASA LaRC Technical Library Digital Repository, 2002:1-12.
  • 5NG M K, LI M J, HUANG J Z, et al. On the impact of dissimilarity measure in k-modes clustering algorithm[ J]. IEEE Trans on Pattern analysis and Machine Intelligence, 2007,29(3):503-507.
  • 6HITCHCOCK D B, CHEN Zhi-min. Smoothing dissimilarities to cluster binary data[ J]. Computational Statistics and Data Analysis, 2008,52 (10) :4699- 4711.
  • 7VALTCHEV P, EUZENAT J. Dissimilarity Measure for collections of objects and values [ C]//Proc of Lecture Notes in Computer Sciences. Berlin : Springer, 1997:259- 272.
  • 8赵明清,蒋昌俊,陶树平.基于等价相异度矩阵的聚类[J].计算机科学,2004,31(7):183-184. 被引量:11
  • 9HORE P, HANLL L O, GOLDGOF D B. A fuzzy C means variant for clustering evolving data stream [ C ]//Proc of IEEE International Conference on Systems, Man and Cybernetics. 2007:360-365.
  • 10EPP S S. Discrete mathematics with applications[ M]. 3rd ed. [ S. l. ] : Thomson Learning Asia Pte Ltd, 2004:571-610.

二级参考文献4

  • 1[1]区奕勤,张先迪编.模糊数学原理及应用.成都:成都电讯工程学院出版社,1989
  • 2[2]Han Jiawei,Kamber M著,范明,孟小峰译.数据挖掘一概念与技术.北京:机械工业出版社,2001
  • 3[3]de Sa,Marques J P著,吴逸飞译.模式识别-原理、方法及应用.北京:清华大学出版社,2002
  • 4[4]左孝凌,李为鑑编.离散数学.上海:上海科学技术文献出版社,

共引文献10

同被引文献13

  • 1赵明清,蒋昌俊,陶树平.基于等价相异度矩阵的聚类[J].计算机科学,2004,31(7):183-184. 被引量:11
  • 2Liu Jinze, Zhang Qi, Wang Wei, et al. Clustering Pari-wise Dissimi- larity Data into Partially Ordered Sets [ C ]//Proc. of the 12th ACM SIGKDD Int. Conf. on Knowledge Discovery and Data Mining, 2006: 637 - 642.
  • 3Liu Jinze, Zhang Qi, Wang Wei, et al. PoClustering: Lossless Cluste- ring of Dissimilarity Data[ C ]//Proc. of the 7th SIAM Int. Conf. on Data Mining, 2007.
  • 4Socolovsky E A. A Dissimilarity Measure for ClUstering High and Infi- nite Dimensional Data That Satisfies the Triangle Inequality [R]. NASA LaRC Technical Library Digital Repository, 2002:1 -12.
  • 5Wan Renxia, Wang Lixin, Wang Mingjun, et al. CNclustering: Clus- tering with compatible nucleoids[ C ]//IEEE 2009 4th Int. Conf. of Computer Science and Education, 2009:797 - 800.
  • 6Haggstrom O, Nelander K. Exact Sampling from Anti-monotone Sys- tems [ J ]. Statisca Neerlandica, 2008, 52 (3) :360 - 380.
  • 7Hore P, Hanll L C), Goldgof D B. A Fuzzy C Means Variant For Clus- tering Evolving Data Stream [ J ]. Systems, Man and Cybernetics, 2007:360 - 365.
  • 8Aggarwal C C, Han Jiawei, Wang Jianyong, et al. Yu. A framework for clustering evolving data stream [ C ]//Prec. of Int. Conf. on Very Large Data Bases( VLDB' 03 ) ,2003:81 - 92.
  • 9刘盾,李天瑞,李华雄.粗糙集理论:基于三支决策视角[J].南京大学学报(自然科学版),2013,49(5):574-581. 被引量:46
  • 10毛毅,陈稳霖,郭宝龙,陈一昕.基于密度估计的逻辑回归模型[J].自动化学报,2014,40(1):62-72. 被引量:32

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部