摘要
最近学者们提出了组合同伦内点法(简记为CHIP方法)去求解一类非线性规划问题。在求解凸规划问题时,与内路径跟踪算法相比,文中在没有要求对数障碍函数是严格凸的以及解集是非空有界的条件下,取得了CHIP方法的全局收敛性结果。文中对CHIP方法进行了改进并利用改进的方法去求解更大一类的非凸规划问题。数值例子表明此改进是有效的。
Recently, a combined homotopy interior point method (denoted as CHIP method for convenience) was presented to solve a class of nonlinear programming problems. For convex programming problems, compared with interior path-following methods, the authors obtained global convergence results without assuming the logarithmic barrier function to be strictly convex and the solution set to be bounded. In this paper, they modify the CHIP method and use the modified one to solve a broader class of non-convex programming problems. The numerical results show that this modification is effective.
出处
《中国海洋大学学报(自然科学版)》
CAS
CSCD
北大核心
2009年第2期353-356,共4页
Periodical of Ocean University of China
基金
国家自然科学基金项目(10371050)资助
关键词
同伦内点方法
非线性规划问题
内路径跟踪算法
非凸规划问题
homotopy interior point method
nonlinear programming problems
interior path-following methods
non-convex programming problems