期刊文献+

改进的同伦内点方法求解非线性规划问题

Modified Homotopy Interior Point Method to Solve Nonlinear Programming Problems
下载PDF
导出
摘要 最近学者们提出了组合同伦内点法(简记为CHIP方法)去求解一类非线性规划问题。在求解凸规划问题时,与内路径跟踪算法相比,文中在没有要求对数障碍函数是严格凸的以及解集是非空有界的条件下,取得了CHIP方法的全局收敛性结果。文中对CHIP方法进行了改进并利用改进的方法去求解更大一类的非凸规划问题。数值例子表明此改进是有效的。 Recently, a combined homotopy interior point method (denoted as CHIP method for convenience) was presented to solve a class of nonlinear programming problems. For convex programming problems, compared with interior path-following methods, the authors obtained global convergence results without assuming the logarithmic barrier function to be strictly convex and the solution set to be bounded. In this paper, they modify the CHIP method and use the modified one to solve a broader class of non-convex programming problems. The numerical results show that this modification is effective.
出处 《中国海洋大学学报(自然科学版)》 CAS CSCD 北大核心 2009年第2期353-356,共4页 Periodical of Ocean University of China
基金 国家自然科学基金项目(10371050)资助
关键词 同伦内点方法 非线性规划问题 内路径跟踪算法 非凸规划问题 homotopy interior point method nonlinear programming problems interior path-following methods non-convex programming problems
  • 相关文献

参考文献16

  • 1Kellogg R B, Li T Y, Yorke J A. A constructive proof of the Brouwer fixed point theorem and computational results [J]. SIAM J Numer Anal, 1976, 13: 473-483.
  • 2Smale S. A convergent process of price adjustment and global Newton method [J]. J Math Econ, 1976, (3): 1-14.
  • 3Chow S N, Mallet-Paret J, Yorke J A. Finding zeros of maps: homotopy methods that are constructive with probability one [J ]. Math Comput, 1978, 32:887-899.
  • 4Garcia C B, Zangwill W I. An approach to homotopy and degree theory [J]. Math Oper Res, 1979, (4) : 390-405.
  • 5Li Y, Lin Z H. A constructive proof of the Poincare-Birkhoff theorem [J]. Trans Amer Math So:, 1995, 347(6) : 2i11-2126.
  • 6Watson L T, A globally convergent algorithm for computing fixed points of C^2 maps [J]. Appl Math Comput, 1979, (5): 297-311.
  • 7Megiddo N. Pathways to the optimal set in linear programming, in Progress in Mathematical Programming, N. Megiddo, Interior Point and Related Methods [C]. New York: Springer, 1988.
  • 8Kojima M, Mizuno S, Yoshise A. A primal-dual interior point algorithm for linear programming, N. Megiddo, Interior Point and Relat- ed Methods[C]. New York: Springer, 1988.
  • 9Kortanek K O, Potm F, Ye Y. On some efficient interior point algorithms for nonlinear convex prrgmmming [J]. Linear Algebra Appl, 1991, 152: 169-189.
  • 10McCormick G P. The projective SUMT method for convex programming [J]. Math Oper Res, 1989, (14): 203-223.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部