摘要
证明了Abel积分I(h)=∮_(Γ_h)Q(x,y)dx-P(x,y)dy的零点个数的最小上界B(2n+2)= B(2n+1)≤3[n/2]+12[(n-1)/2]+4([p]表示p的整数部分),这里Γ_h是代数曲线H(x,y)= x^2±x^4+y^4=h的连通闭分支,h∈∑(Γ_h存在的最大开区间),P(x,y),Q(x,y)是关于x,y的次数不超过2n+2或2n+1的实多项式.
It is proved that the supremum of the number of zeros of Abelian integral I(h) = ∮Гh Q(x,y)dx - P(x,y)dy satisfies B(2n + 2) = B(2n + 1) 〈 3[n/2] + 12[n-1/4] + 4 ([p] denotes the entire part of p ), where Гh is a compact component of H(x, y) = x^2 ± x^4 ± y^4 = h, h ∈∑ (a maximal open interval of Fh), P(x, y), Q(x, y) are real polynomials of x, y with degree not greater than 2n + 2 or 2n + 1.
出处
《系统科学与数学》
CSCD
北大核心
2009年第3期323-330,共8页
Journal of Systems Science and Mathematical Sciences