期刊文献+

基于可辨识矩阵的模糊目标系统决策约简算法 被引量:2

A Decision Reduction Algorithm Based on the Discernibility Matrix in the Fuzzy Object System
原文传递
导出
摘要 在模糊目标信息系统决策约简和可辨识矩阵定义的基础上,讨论了可辨识矩阵的性质以及与决策约简集之间的关系.同时定义一种新的属性重要度,并将此作为启发式信息,设计了一种模糊目标决策信息系统最小决策约简算法,通过实例验证该算法简捷、有效. Based on the definition of the decision reduction and the discernibility matrix in the fuzzy object information system, The property of the discernibility matrix and relation between the discernibility matrix and decision reduction set are discussed. At the same time, A new significance of attribute is defined and taking it as heuristic information, a minimal decision reduction algorithm in the fuzzy object decision information system is designed. The result of the example shows that this algorithm is not only brief, but also effective.
作者 杨成福 舒兰
出处 《数学的实践与认识》 CSCD 北大核心 2009年第5期103-107,共5页 Mathematics in Practice and Theory
基金 国家自然科学基金(10671030) 电子科技大学中青年学术带头人培养计划(Y02018023601033)
关键词 模糊目标信息系统 可辨识矩阵 决策约简 算法 fuzzy object information system discernibility matrix decision reduction algorithm
  • 相关文献

参考文献9

二级参考文献64

  • 1王国胤.Rough集理论和知识获取[M].西安:西安交通大学出版社,2001..
  • 2[2]Jianwei Han, M Kamber. Data Mining: Concepts and Techniques. San Francisco: Morgan Kaufmann Publishers, 2000
  • 3[3]J Grabmeier, A Rudolph. Techniques of cluster algorithms in data mining. Data Mining and Knowledge Discovery, 2002, 6(4): 303~360
  • 4[4]A K Jain, M N Murty, P J Flynn. Data clustering: A review. ACM Computing Surveys, 1999, 31(3): 264~323
  • 5[5]J MacQueen. Some methods for classification and analysis of multivariate observations. In: L M Le Cam, J Neyman eds. Proc of the 5th Berkeley Symp on Mathematics, Statics and Probability, Vol 1. Berkeley: Berkeley University of California Press, 1967. 281~298
  • 6[6]J C Bezdek. Pattern Recognition with Fuzzy Objective Function Algorithms. New York: Plenum Press, 1981
  • 7[7]L Kaufman, P J Rousseeuw. Finding Groups in Data: An Introduction to Cluster Analysis. New York: John Wiley & Sons, 1990
  • 8[8]M Ester, H P Kriegel, J Sander et al. A density-based algorithm for discovering clusters in large spatial databases with noise. In: E Simoudis, J Han, U Fayyad eds. Proc of the 2nd Int'l Conf on Knowledge Discovery and Data Mining (KDD-96). Menlo Park: AAAI Press, 1996, 226~231
  • 9[9]M Ankerst, M Breuning, H P Kriegel et al. OPTICS: Ordering points to identify the clustering structure. In: A Delis, C Faloutsos, S Ghandeharizadeh eds. Proc of the 1999 ACM SIGMOD Int'l Conf on Management of Data. New York: ACM Press, 1999. 49~60
  • 10[10]W Wang, J Wang, R Muntz. STING: A statistical information grid approach to spatial data mining. In: M Jarke, M J Carey, K R Dittrich et al eds. Proc of the 23rd IEEE Int'l Conf on Very Large Data Bases. San Francisco: Morgan Kaufmann Publishers, 1997, 186~195

共引文献715

同被引文献21

  • 1孙士保,秦克云.基于包含度的决策表属性约简算法的研究[J].计算机工程与应用,2006,42(3):19-21. 被引量:6
  • 2孙林,徐久成,马媛媛.基于包含度的不一致决策表约简新方法[J].计算机工程与应用,2007,43(24):166-168. 被引量:4
  • 3徐伟华,张文修.基于优势关系下不协调目标信息系统的分布约简[J].模糊系统与数学,2007,21(4):124-131. 被引量:45
  • 4Pawlak Z, Rough Sets. Theoretical Aspects of Reasoning about Data[M]. Dordrecht, Netherlands: Kluwer Academic Pub lishers, 1991.
  • 5Mi J S, WuW Z, Zhang W X. Approaches to Knowledge Reduction Based on Variable Precision Rough Set Model[J]. Infor- mation Sciences, 2004,159 ; 255 - 272.
  • 6Gau W L, Buehrer D J. Vague sets[J]. IEEE Trans Syst Man Vybern, 1993, 23(2).. 610-614.
  • 7张文修,梁怡,吴伟志.信息系统与知识发现[D].北京:科学出版社,2003:75-80.
  • 8Pawlak Z. Rough Sets. Theoretical Aspects of Reasoning about Data. Dordrecht, Netherlands:Kluwer Academic Publish-ers, 1991.
  • 9Leung Y, Fischer M, Wu weizhi, et al. A Rongh Set Ap-proach for the Discovery of Classification Rules in Interval-valued Information Systems[J]. International Jounal of Approxi-mate Reasoning,. 2008. 47(2):233-246.
  • 10Shao M W, Zhang W X. Dominance Relation and Rules in an Incomplete Ordered Information System. International Jour-nal of Intelligent Systems, 2005(20):13-17.

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部