期刊文献+

倒向随机微分方程中生成元g的经济含义 被引量:1

The Economic Meanings of Generators in Backward Stochastic Differential Equations
原文传递
导出
摘要 将倒向随机微分方程看作金融市场中的一个定价机制,而该机制具体体现就是生成元g.本文通过经典的Black-Scholes模型探讨了生成元g的经济含义,首次提出了生成元g的表达式中含有折现的概念,同时详细分析并说明了不同的生成元g可以反应同一未定权益价格过程的不同形态.最后结合上面的讨论给出了关于一定形式的生成元g的类Jensen不等式性质. Taken backward stochastic differential equation as a mechanism of pricing in financial market, the decisive part is the generator. Here some economic meanings of the generator are discussed in virtue of the classic Black-Scholes model. The idea is first proposed that the expression of a generator includes the notation of discount. Meanwhile, for the same price process of a contingent claim, different generators can respond its different forms. Combined with the above discussion, a similar Jensen's inequality about the generator with a fixed form is given finally.
出处 《数学的实践与认识》 CSCD 北大核心 2009年第5期108-113,共6页 Mathematics in Practice and Theory
关键词 倒向随机微分方程 BLACK-SCHOLES模型 记账单位 JENSEN不等式 backward stochastic differential equation Black-Scholes model~ numeraire Jensen's inequation
  • 相关文献

参考文献6

  • 1Peng S, BSDE and related g-expectation[J]. Pitman Research Notes in Math Series, 1996,364:141-160.
  • 2Peng S. Monotonic limit theorem of BSDE and nonlinear decomposition theorem of Doob-Mayer type[J]. Probab Theory & Rel Fields, 1999,113 : 473 499.
  • 3Zengjing Chen, Reg Kulperger, Long Jiang. Jensen's inequality for g-expectation: part 1[J]. C R Acad Sci Paris, Ser, 2003,1337 : 725-730.
  • 4Briand P, Coquet F, Hu Y, Memin J, Peng S. A converse comparison theorem for BSDEs and related properties of g-expectation[J]. Electron Comm Probab, 2000,5 : 101-117.
  • 5Zengjing Chen, Peng S. A general downcrossing inequality for g-martingales[J]. Statistics & Probability Letters, 2000,46:169-175.
  • 6Pardoux E, Peng S. Adapted solution of a backward stochastic differential equation [J]. Systems and Control Letters, 1990,14: 55-61.

同被引文献8

  • 1杨维强,杨丽.倒向随机微分方程的非参估计及模拟[J].山东大学学报(理学版),2006,41(2):34-38. 被引量:2
  • 2Pardoux E, Peng S. Adapted Solution of A Backward Stochastic Differential Equation [J]. Systems Control Letters, 1990,14(1).
  • 3Peng S. Probabilistic Interpretation for Systems of Quasilinear Parabolic Partial Differential Equations[J]. Stochastics and Stochastics Report, 1991,37(1/2).
  • 4E1 Karoui N, Peng S, Quenez M C. Backward Stochastic Differential Equations in Finance [J]. Mathematical Finance. 1997,7(1).
  • 5Stanton R. A Nonparametric Model of Term Structure Dynamics and The Market Price of Interest Rate Risk [J]. Journal of Finance, 1997,52(5).
  • 6Hairdle W. Applied Nonparametric Regression [M]. Berlin: Humboldt--University, 1994.
  • 7Wasserman L. All of Nonparametric Statistics [M]. Berlin: Springer,2006.
  • 8康进,刘敬伟.非参数回归估计与人工神经网络方法的预测效果比较[J].统计与决策,2009,25(23):153-155. 被引量:5

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部