期刊文献+

一比率依赖的捕食-被捕食模型的空间斑图研究 被引量:1

Pattern Formation of a Ratio-dependent Predator-prey Model
原文传递
导出
摘要 研究了一带比率依赖功能性反应的捕食-被捕食模型的空间斑图.我们得到模型发生Hopf和Turing分支的临界表达式,得到发生Turing斑图发生的精确区域,并给出了数值模拟.我们的结果表明:该模型具有丰富的动力学行为,包括点状、条状以及迷宫状斑图.这些结果说明利用反应扩散方程建模是揭示空间动力学复杂性机理的一个有效工具. We analyze the pattern formation of a ratio-dependent predator-prey system. We obtain the conditions of Hopf and Turing bifurcation in a spatial domain. In particular, exact Turing domain is. given. Also we perform a series of numerical simulations. The obtained results reveal that this system has rich dynamics, such as spotted, stripe and labyrinth pattern, which show that it is useful to use reaction-diffusion model to reveal the spatial dynamics.
作者 刘盼萍
机构地区 中北大学数学系
出处 《数学的实践与认识》 CSCD 北大核心 2009年第5期114-119,共6页 Mathematics in Practice and Theory
基金 国家自然科学基金资助项目(60771026) 新世纪优秀人才支持计划资助项目(NCET050271) 山西省自然科学基金资助项目(2006011009)
关键词 比率依赖 捕食模型 空间斑图 ratio-dependent model predator-prey pattern formation
  • 相关文献

参考文献12

  • 1Durrett R, Levin S A. Stochastic spatial models: A user's guide to ecological applications[J]. Phil Trans R Soc Lond B,1994,343: ,329-350.
  • 2Watts D J, Strogatz S H. Collective Dynamics of Small-world Networks[M]. Nature, 1998,393 : 440-442.
  • 3Tessone C J, Cencini M, Torcini A. Synchronization of extended chaotic systems with long-range interactions: An analogy to levy-flight spreading of epidemics[J]. Phys Rev Lett, 2006,97 : 224101.
  • 4Turing A M. The chemical basis of morphogensis[J]. Phil Trans R Soc Lond B, 1952,237 (641):37-72.
  • 5Murray J D. Mathematical Biology II[M]. Spatial models and biomedical applications, Springer,2003.
  • 6Ouyang Q R L, G L Swinney H L. Dependence of turing pattern wavelefigth on diffusion rate[J]. 1995,102(6): 2551-2555.
  • 7Barrio R A, Varea C, Arag'n J L. A two-dimensional numerical study of spatial pattern formation in interacting Turing systems[J]. Bulletin of M B,1999,61:483-505.
  • 8Baurmann M, Gross T, Feudel U. Instabilities in spatially extended predator-prey systems: Spatio-temporal patterns in the neighborhood of Turing-Hopf bifurcations [J]. J Theor Biol, 2007,245 : 220-229.
  • 9Alonso D, Bartumeus F, Catalan J. Mutual interference between predators can give rise to Turing spatial patterns[J]. Ecology,2002,83(1) :28-34.
  • 10McGehee E A, Peacock-Lopez E. Turing patterns in a modified Lotka-Volterra model[J]. Phys Lett A, 2005, 342 : 90-98.

同被引文献1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部