期刊文献+

多维非线性脉冲波的单波“干扰”

Interaction of Short Pulses in a Multi-dimension Nonlinear Hyperbolic System with a Single Initial Wave
原文传递
导出
摘要 利用非线性几何光学讨论3×3的高维半线性双曲偏微分方程在仅有一个初始脉冲波的条件下,系统会产生多个脉冲波的现象,从而从数学的角度论证了单个脉冲波的传播与"干扰"特性. With the aid of nonlinear geometric optics, this paper discusses the behavior of the pulses like solutions to a 3×3 semilinear hyperbolic system with a single initial wave. It shows that there are three pulses after the time t = 0, and therefore this illustrates the property of propagation and interaction for a single pulses in mathematics.
出处 《数学的实践与认识》 CSCD 北大核心 2009年第5期185-191,共7页 Mathematics in Practice and Theory
基金 北京市教委科技基金资助项目(KM200710009012)
关键词 脉冲形式的解 干扰 特征线 pulses like solutions characteristics interaction
  • 相关文献

参考文献6

  • 1Carles R, Rauch J. Focusing of spherical nonlinear pulses in R^1+3[J]. Proc Amer Math Soc, 2002,130(3): 791- 804.
  • 2Carles R, Rauch J. Focusing of spherical nonlinear pulses in R^1+3 [J]. II. Nonlinear caustic, Rev Mat Iberoamericana, 2004,20 : 815-864.
  • 3Caries R, Raueh J. Focusing of spherical nonlinear pulses in R^1+3[J]. III. Sub and Supercritical cases, Tohoku Math J,2004,56(2):393-410.
  • 4Aherman D, Rauch J. Diffractive nonlinear geometric optics for short pulses[J]. SIAM J Math Anal,2003,34: 1477-1502.
  • 5Alterman D, Rauch J. Nonlinear geometric optics for short pulses[J]. J Diff Eq, 2002,178 (2) : 437-465.
  • 6M-S Yuan. Interaction of Short Pulses in a 3 × 3 Hyperbolic System[M]. Proc R Soc Edinb, 2008,138A: 1163- 1178.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部