期刊文献+

对二维分离流涡黏性系数非线性分布的新认识 被引量:6

A NEW UNDERSTANDING OF THE NONLINEAR EDDY-VISCOSITY DISTRIBUTION FOR THE TWO-DIMENSIONAL SEPARATION FLOWS
下载PDF
导出
摘要 以弱非线性涡黏性模型为出发点,对Delery分离流动实验结果进行分析并获得了非平衡态分离区涡黏性系数与形状因子J之间的非线性关系.该非线性关系显示在分离起始阶段,涡黏性系数较平衡态先减小,后增大;再附阶段,涡黏性系数较平衡态数值逐渐增大,并在再附点位置接近最大,而后又逐渐减小,恢复到平衡态水平.总结涡黏性系数的这种非线性发展数学关系式,并将它应用于BL模型,在不添加微分方程的情况下发展出一种适用于分离流动的改进代数湍流模型.对低速平板流动,跨声速,超声速以及高超声速分离流动的计算结果表明,该改进湍流模型可以较准确地模拟各类复杂分离流动,计算精度明显优于传统代数模型以及一些两方程模型,而计算工作量仍与BL模型相当.这表明所提出的涡黏性系数非线性发展规律是正确的,且应用在二维分离流动中具有一定的普适性. A study of turbulence modeling of 2D separation flows is presented in the paper. First, experimental data analysis of Delery's transonic bump showed the nonlinear development, of the eddy viscosity in the separation zone. Second, it is found that the eddy-viscosity decreases in the separation part and then enlarges during reattachment and relaxation process. Third, a nonlinear correlation is extracted from the experiment data and then successfully applied into the Balwin-Lomax model to form a mathematically new and simple algebraic turbulence model. The proposed model was evaluated with several typical separation flows, including low speed flow over plate, transonic flow, supersonic flow and the hypersonic flow. The numerical results are compared with the experimental data and the results obtained from other models to show that the nonlinear characteristics of eddy-viscosity proposed in this paper is correct and suitable for 2D separation flows.
出处 《力学学报》 EI CSCD 北大核心 2009年第2期145-154,共10页 Chinese Journal of Theoretical and Applied Mechanics
基金 国家自然科学基金资助项目(90405009)~~
关键词 涡黏性系数 非线性 Delery分离实验 Baldwin—Lomax模型 分离流动 eddy-viscosity, nonlinear, Delery transonic bump flows, Baldwin-Lomax turbulence model, separation flows
  • 相关文献

参考文献5

二级参考文献55

  • 1[1]JOHNSTON J P, FLACK K A. Review-advances in three-dimensional turbulent boundary layers with emphasis on the wall-layer regions [J]. Journal of Fluids Engineering, 1996,118,219-231.
  • 2[2]BRADSHAW P,PONTIKOS N S. Measurements in the turbulent boundary layer on an ‘infinite' swept wing [J]. J. Fluid Mech.,1985,159,105-130.
  • 3[3]ANDERSON S D,EATON J K.Reynolds stress development in pressure-driven three-dimensional turbulent boundary layers [J]. J. Fluid Mech., 1989, 202,263-294.
  • 4[5]BRADSHAW P, Turbulent secondary flows [J]. Annu. Rev. Fluid Mech.,1987,19,53-74.
  • 5[6]MOIN P, SHIH T H, DRIVER M,MANSOUR N N, Direct numerical simulation of a three-dimensional boundary layer [J]. Phys. Fluids A, 1990,2(10):1846-1853.
  • 6[7]ROTTA J C, A family of turbulence models for three-dimensional boundary layers [M], In: Turbulence Shear Flow I, ed. by Durst F., Launder B.E., Schmidt F W, Whitelaw J H. Springer-Verlag, Berlin, 1979:267-278.
  • 7[8]FU S, LAUNDER B E, TSELEPIDAKIS D P, Accommodating the effects of high strain rates in modelling the pressure-strain correlation [R]. TFD/87/5, Dept. Mech. Eng., UMIST, 1987.
  • 8[9]GATSKI T B, SPEZIALE C G. On explicit algebraic stress models for complex turbulent flows [J]. J. Fluid Mech., 1993,254,59-78.
  • 9[10]SPEZIALE C G, On nonlinear K-L and K-ε models of turbulence [J]. J. Fluid Mech.,1987,178,459-475.
  • 10[11]HINZE J O. Turbulence [M]. McGraw-Hill book company, New york, 1975.

共引文献8

同被引文献37

引证文献6

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部