期刊文献+

基于大间隔方法的汉语组块分析 被引量:7

Chinese Chunking with Large Margin Method
下载PDF
导出
摘要 汉语组块分析是中文信息处理领域中一项重要的子任务.在一种新的结构化SVMs(support vector machines)模型的基础上,提出一种基于大间隔方法的汉语组块分析方法.首先,针对汉语组块分析问题设计了序列化标注模型;然后根据大间隔思想给出判别式的序列化标注函数的优化目标,并应用割平面算法实现对特征参数的近似优化训练.针对组块识别问题设计了一种改进的F1损失函数,使得F1损失值能够依据每个句子的实际长度进行相应的调整,从而能够引入更有效的约束不等式.通过在滨州中文树库CTB4数据集上的实验数据显示,基于改进的F1损失函数所产生的识别结果优于Hamming损失函数,各种类型组块识别的总的F1值为91.61%,优于CRFs(conditional random fields)和SVMs方法. Chinese chunking plays an important role in natural language processing. This paper presents a large margin method for Chinese chunking based on structural SVMs (support vector machines). First, a sequence labeling model and the formulation of the learning problem are introduced for Chinese chunking problem, and then the cutting plane algorithm is applied to efficiently approximate the optimal solution of the optimization problem. Finally, an improved F1 loss function is proposed to tackle Chinese chunking. The loss function can scale the F1 loss value to the length of the sentence to adjust the margin accordingly, leading to more effective constraint inequalities. Experiments are conducted on UPENN Chinese Treebank-4 (CTB4), and the hamming loss function is compared with the improved F1 loss function. The experimental results show that the training algorithm with the improved F1 loss function can achieve higher performance than the Hamming loss function. The overall F1 score of Chinese chunking obtained with this approach is 91.61%, which is higher than the performance produced by the state-of-the-art machine learning models, such as CRFs (conditional random fields) and SVMs models.
出处 《软件学报》 EI CSCD 北大核心 2009年第4期870-877,共8页 Journal of Software
基金 国家自然科学基金Nos.60673043,60773173 国家高技术研究发展计划(863)No.2006AA01Z143 江苏省自然科学基金No.BK2006117 江苏省高校自然科学基金No.07KJB520057~~
关键词 汉语组块分析 大间隔 判别式学习 损失函数 Chinese chunking large margin discriminative learning loss function
  • 相关文献

参考文献2

二级参考文献15

  • 1[1]Erik F, Tjong Kim Sang,Buchholz S. Introduction to the CoNLL-2000 Shared Task: Chunking. In: Proceedings of CoNLL2000 and LLL-2000, Lisbon, Portugal, 2000. 127~132
  • 2[2]Steven A. Parsing by Chunks. In: Berwick, Abney, Tenny eds. Principle-Based Parsing: Kluwer Academic Publishers,1991. 257~278
  • 3[5]Ratnaparkhi A. A maximum entropy model for part-of-speech tagging. In: Proceedings of the Conference on Empirical Methods in Natural Language Processing, 1996
  • 4[6]Ratnaparkhi A. A simple introduction to maximum entropy models for natural language processing. Institute for Research in Cognitive Science, University of Pennsylvania : Technical Report 9708, 1997
  • 5[7]Berger A, Pietra S D, Pietra V D. A maximum entropy approach to natural language processing. Computational Linguistics, 1996,22(1):39~71
  • 6[8]Skut, Wojciech, Thorsten Brants. A maximum entropy partial parser for unrestricted text. In:Proceedings of the 6th Workshop on Very Large Corpora, Montreal, Canada, 1998. 143~151
  • 7[10]Abney S. Part-of-speech tagging and partial parsing. In:Church K, Young S, Bloothooft G eds. Corpus-Based Methods in Language and Speech, An ELSNET volume, Dordrecht:Kluwer Academic Publishers, 1996. 119~136
  • 8[11]Church K W. A stochastic parts program and noun phrase parser for unrestricted text. In:Proceedings of the 2nd Conference on Applied Natural Language Processing, Texas, USA, 1988.136~143
  • 9[12]Ramshaw L A, Marcus M P. Text chunking using transformation-based learning. In: Proceedings of ACL Third Workshop on Very Large Corpora, Cambridge, USA, 1995. 82~94
  • 10[13]Darroch J N, Ratcliff D. Generalized iterative scaling for loglinear models. Annals of Mathematical Statistics, 1972,43(5):1470~1480

共引文献90

同被引文献101

引证文献7

二级引证文献34

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部