摘要
Investigation was made into the degradation of organic compounds by a dielectric barrier corona discharge (DBCD) system. The DBCD, consisting of a quartz tube, a concentric high voltage electrode and a net wrapped to the external wall (used as ground electrode), was introduced to generate active species which were sprayed into the organic solution through an aerator fixed on the bottom of the tube. The effect of four factors-the discharge voltage, gas flow rate, solution conductivity, and pH of wastewater, on the degradation efficiency of phenol was assessed. The obtained results demonstrated that this process was an effective method for phenol degradation. The degradation rate was enhanced with the increase in power supplied. The degradation efficiency in alkaline conditions was higher than those in acid and neutral conditions. The optimal gas flow rate for phenol degradation in the system was 1.6 L/min, while the solution conductivity had little effect on the degradation.
Investigation was made into the degradation of organic compounds by a dielectric barrier corona discharge (DBCD) system. The DBCD, consisting of a quartz tube, a concentric high voltage electrode and a net wrapped to the external wall (used as ground electrode), was introduced to generate active species which were sprayed into the organic solution through an aerator fixed on the bottom of the tube. The effect of four factors-the discharge voltage, gas flow rate, solution conductivity, and pH of wastewater, on the degradation efficiency of phenol was assessed. The obtained results demonstrated that this process was an effective method for phenol degradation. The degradation rate was enhanced with the increase in power supplied. The degradation efficiency in alkaline conditions was higher than those in acid and neutral conditions. The optimal gas flow rate for phenol degradation in the system was 1.6 L/min, while the solution conductivity had little effect on the degradation.
基金
supported by Ministry of Education of the People's Republic of China (20070141004)