期刊文献+

分布式并行粒子滤波算法结构分析与研究 被引量:6

Structure analysis and research on distributed parallel particle filter
下载PDF
导出
摘要 粒子滤波器是解决非线性/非高斯系统状态估计的有效技术,广泛应用于目标跟踪、无线通信、自动控制等领域。但因其计算复杂、计算量庞大等缺陷,无法满足实时系统的应用需求。针对粒子滤波器计算量大、实时性差的问题,提出了一种基于MPI的分布式并行粒子滤波算法,给出了Master-Slave并行模式下任务分配、数据划分与负载平衡策略。实验结果表明,若忽略通信代价,加速比基本呈线性增长。 Particle filter is an effective technique for the state estimation in non-linear and/or non-Gaussian dynamic systems. However, its real-time application is limited due to their inherent complex and computational intensity. In order to decrease drawback on on-line filtering, design of distributed parallel particle filter algorithm based on MPI is proposed, a task division, data decomposition and dynamic load balance strategy under Master-Slave model are presented. The result shows that speedups is great improved if the communication time is ignored.
出处 《计算机工程与设计》 CSCD 北大核心 2009年第6期1444-1445,1558,共3页 Computer Engineering and Design
基金 国家自然科学基金项目(60572061)
关键词 MONTECARLO 粒子滤波器 分布式并行算法 MPI MASTER-SLAVE Monte Carlo particle filter distributed parallelalgorithm MPI master-slave
  • 相关文献

参考文献7

  • 1Doucet A,Godsill S,Andrieu C.On sequential Monte Carlo sampiing methods for Bayesian Filter[J].Statistics and Computing, 2000,10(3): 197-208.
  • 2Gustafsson F, Gunnarsson F, Bergman N,et al.Particle filters for positioning, navigation, and tracking [J]. IEEE Transactions on Signal Processing,2002,50:425-435.
  • 3Haykin S,Huber K,Zhe Chen.Bayesian sequential state estimation for MIMO wireless communications[C].Proceedings of the IEEE,2004:439-454.
  • 4Huang A J.A tutorial on bayesian estimation and tracking techniques applicable to non-linear and non-Gaussian process [R]. MITRE Technique Report,2005.
  • 5Gordon, Salmond D J,Smith AFM.Novel approach to nonlinear/ non-Gaussian Bayesian state estimation[J].IEEE Proceedings F, Radar and Signal Processing, 1993,140(2): 107-113.
  • 6Michael J Quirm. Parallel Programming in C with MPI and OpenMP[M].北京:清华大学出版社,2004.
  • 7Joaquin Miguez. Analysis of parallelizable resampling algorithms for particle filtering[J].IEEE Transactions on Signal Processing,2007,87:3155-3174.

同被引文献30

引证文献6

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部