期刊文献+

Cryptanalysis of RSA for a special case with d>e 被引量:3

Cryptanalysis of RSA for a special case with d>e
原文传递
导出
摘要 In this paper, we study the RSA public key cryptosystem in a special case with the private exponent d larger than the public exponent e. When N^0.258 ≤ e ≤N^0.854, d 〉 e and satisfies the given conditions, we can perform cryptanalytic attacks based on the LLL lattice basis reduction algorithm. The idea is an extension of Boneh and Durfee's researches on low private key RSA, and provides a new solution to finding weak keys in RSA cryptosystems. In this paper, we study the RSA public key cryptosystem in a special case with the private exponent d larger than the public exponent e. When N^0.258 ≤ e ≤N^0.854, d 〉 e and satisfies the given conditions, we can perform cryptanalytic attacks based on the LLL lattice basis reduction algorithm. The idea is an extension of Boneh and Durfee's researches on low private key RSA, and provides a new solution to finding weak keys in RSA cryptosystems.
出处 《Science in China(Series F)》 2009年第4期609-616,共8页 中国科学(F辑英文版)
基金 Supported partially by the National Basic Research Program of China (Grant No. 2003CB314805) the National Natural Science Foundationof China (Grant Nos. 90304014 and 60873249) the Project funded by Basic Research Foundation of School of Information Science and Technology of Tsinghua
关键词 RSA CRYPTANALYSIS lattice basis reduction LLL algorithm RSA, cryptanalysis, lattice basis reduction, LLL algorithm
  • 相关文献

参考文献11

  • 1Rivest R,Shamir A,Adleman L.A methodfor obtaining digital signatures and public-key cryptoeystems.CommunAcm,1979,21(2):120-126
  • 2Wiener M.Cryptanalysis of short RSA secret exponents.IEEE T InforemTheory,1990,36:553-558
  • 3Boneh D,Durfee G.Cryptanalysis of RSA with private key of less thanN0.292.In:Proceeding of Eurocrypt'99.LNCS,Vol.1592.Berlin:Springer-Verlag,1999.1-11
  • 4Blomer J,May A.Low secret exponent RSA revisited.In:Cryptography and LatticeConference-CalC 2001.LNCS,Vol.2146.Berlin:Springer-Verlag,2001.4-19
  • 5Hasted J.Solving simultaneous modular equations of low degree.SIAM JComput,1988,17:336-341
  • 6Boneh D,Durfee G,Frankel Y.An attack on RSA given a fraction of the private keybits.In:Proceeding of Asiacrypt'98.LNCS,Vol.1514.Berlin:Springer-Verlag,1998.25-34
  • 7Lenstra A K,Lenstra H W,Lovasz L.Factoring polynomials with rational coefficients.MathAnn,1982,261:513-534
  • 8Jutla C.On finding small solutions of modular multivariate polynomialequations.In:Proceeding of Eurocrypt'98.LNCS,Vol.1403.Berlin:Springer-Verlag,1998.158-170
  • 9Nguyen P Q,Stehle D.Floating-point LLL revisited.In:Proceeding of Eurocrypt2005.LNCS,Vol.3494.Berlin:Springer-Verlag,2005.215-233
  • 10Coppersmith D.Small solution to polynomial equations,and low exponent RSAvulnerabilities.J Cryptoi,1997,10(4):233-260

同被引文献19

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部