期刊文献+

基于TS101的多目标定位系统硬件设计与实现

Hardware Design and Implementation for Multi-target Location System Based on TS101
下载PDF
导出
摘要 Tiger SHARC系列的ADSP-TS101是ADI公司开发的一款高性能的利于并行处理的高速信号处理器。为了实现水下多目标定位算法的实时处理,设计并实现了由FPGA和ADSP-TS101构成的多通道同步采样和多处理器并行实时处理系统;该系统采用FPGA的逻辑控制,完成了多通道同步采样,采用多处理器并行结构,完成了多目标定位系统中方位估计算法的实时并行实现,解决了在水下多目标定位系统的多通道同步采样和大数据量的高速实时处理的问题;实验结果证明,该系统具有良好的稳定性和通用性,满足了多目标定位的高速实时处理要求。 ADSP--TS101, which belongs to the series of Tiger SHARC and is developed by ADI, is a high performance DSP with good properties of parallel processing and high--speed. In order to implement the real--time processing for the algorithm of multi--target tracking, a parallel real--time processing system with multi--channel synchronous sampling and multi--processor based on FPGA and ADSP-- TS101 is designed and implemented. FPGA logical control was adopted to realize multi--channel synchronous sampling, and the parallel construction with multi--processor was adopted to realize psrallel real--time processing (or the algorithm of orientation estimation in multi -target tracking. So the problems to multi--channel synehronous sampling and to high--speed real--time processing of great data are solved. From the results of experiments, the real--time processing system has good stability and real--time processing capability, so that it satisfied the requirements of high--speed real--time processing for multi--target tracking.
机构地区 西北工业大学
出处 《计算机测量与控制》 CSCD 北大核心 2009年第3期504-505,527,共3页 Computer Measurement &Control
关键词 多目标定位系统 并行结构 波束形成 高速实时处理 ADSP—TS101 multi--target location system parallel construction beam forming high--speed real--time processing ADSP--TS101
  • 相关文献

参考文献3

  • 1Jeffry Milrod. Continuous Real-Time Signal Processing-Comparing Tiger SHARC and PowerPC [EB/OL]. COTS Journal. 2003. 12
  • 2Murphy R. lank Port Tips & Tricks For ADSP-2106x & AD SP-2116x SHARC DSPs [DB/OL]. www. anaolg.com. 2003. 10. 27
  • 3党建武,黄建国.基于水下制导的多目标跟踪研究[J].信息与控制,2003,32(6):538-542. 被引量:2

二级参考文献28

  • 1[1]Wax N. Signal-to-noise improvement and the statistics of tracking population [J]. Journal of Applied Physics, 1995, 26(10): 586~595.
  • 2[2]Sittler R W. An optimal data association problem in surveillance theory [J]. IEEE Transactions on Military Electronics, 1964,8(2): 125~139.
  • 3[3]Kalman R E. A new approach to linear filtering and prediction problems [J]. Journal of Basic Engineering, 1960,82(2): 34~45.
  • 4[4]Bar-Shalom Y, Jaffer A G. Adaptive nonlinear filtering for tracking with measurements of uncertain origin [A]. Proc. the 11th IEEE Conf. on Decision and Control [C].1972. 243~247.
  • 5[5]Bar-Shalom Y, Tse E. Tracking in a cluttered environment with probabilistic data association [J]. Automation, 1975, 11: 451 ~ 460.
  • 6[6]Bar-Shalom Y. Extension of the probabilistic data association filter in multi-target tracking [A]. Proc. 5th Symp. on Nonlinear Estimation [C]. 1974. 16~21.
  • 7[7]Reid D B. An algorithm for tracking multiple targets [J]. IEEE Trans. Automat. Control, 1979, 24(6):853~854.
  • 8[8]Morefield C L. Application of 0-1 integer programming to multi-target tracking problems [J]. IEEE Trans. Automat. Contr., 1977, 22(3): 302~312.
  • 9[9]Bar-Shalom Y. Tracking methods in a multi-target environment [J]. IEEE Trans. Automat. Contr., 1978, 24: 618~626.
  • 10[10]Aspach D L, Sorenson H W. Recursive Bayesian estimation using Gaussian sums [J]. Automation, 1971, 7:465~479.

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部